691 research outputs found

    Enhanced photothermal displacement spectroscopy for thin-film characterization using a Fabry-Perot resonator

    Get PDF
    We have developed a technique for photothermal displacement spectroscopy that is potentially orders of magnitude more sensitive than conventional methods. We use a single Fabry-Perot resonator to enhance both the intensity of the pump beam and the sensitivity of the probe beam. The result is an enhancement of the response of the instrument by a factor proportional to the square of the finesse of the cavity over conventional interferometric measurements. In this paper we present a description of the technique, and we discuss how the properties of thin films can be deduced from the photothermal response. As an example of the technique, we report a measurement of the thermal properties of a multilayer dielectric mirror similar to those used in interferometric gravitational wave detectors

    The making of eusociality: insights from two bumblebee genomes.

    Get PDF
    The genomes of two bumblebee species characterized by a lower level of sociality than ants and honeybees provide new insights into the origin and evolution of insect societies

    Stability of Magneto-optical Traps with Large Field Gradients: Limits on the Tight Confinement of Single Atoms

    Get PDF
    We report measurements of the stability of magneto-optical traps (MOTs) for neutral atoms in the limit of tight confinement of a single atom. For quadrupole magnetic field gradients at the trap center greater than ∼1 kG/cm, we find that stochastic diffusion of atoms out of the trapping volume becomes the dominant particle loss mechanism, ultimately limiting the MOT size to greater than ∼5 μm. We measured and modeled the diffusive loss rate as a function of laser power, detuning, and field gradient for trapped cesium atoms. In addition, for as few as two atoms, the collisional loss rates become very high for tightly confined traps, allowing the direct observation of isolated two-body atomic collisions in a MOT

    Genetic components to caste allocation in a multiple-queen ant species.

    Get PDF
    Reproductive division of labor and the coexistence of distinct castes are hallmarks of insect societies. In social insect species with multiple queens per colony, the fitness of nestmate queens directly depends on the process of caste allocation (i.e., the relative investment in queen, sterile worker and male production). The aim of this study is to investigate the genetic components to the process of caste allocation in a multiple-queen ant species. We conducted controlled crosses in the Argentine ant Linepithema humile and established single-queen colonies to identify maternal and paternal family effects on the relative production of new queens, workers, and males. There were significant effects of parental genetic backgrounds on various aspects of caste allocation: the paternal lineage affected the proportion of queens and workers produced whereas the proportions of queens and males, and females and males were influenced by the interaction between parental lineages. In addition to revealing nonadditive genetic effects on female caste determination in a multiple-queen ant species, this study reveals strong genetic compatibility effects between parental genomes on caste allocation components

    Gravitational Helioseismology?

    Get PDF
    The magnitudes of the external gravitational perturbations associated with the normal modes of the Sun are evaluated to determine whether these solar oscillations could be observed with the proposed Laser Interferometer Space Antenna (LISA), a network of satellites designed to detect gravitational radiation. The modes of relevance to LISA---the l=2l=2, low-order pp, ff and gg-modes---have not been conclusively observed to date. We find that the energy in these modes must be greater than about 1030ergs10^{30} \rm{ergs} in order to be observable above the LISA detector noise. These mode energies are larger than generally expected, but are much smaller than the current observational upper limits. LISA may be confusion-limited at the relevant frequencies due to the galactic background from short-period white dwarf binaries. Present estimates of the number of these binaries would require the solar modes to have energies above about 1033ergs10^{33} \rm{ergs} to be observable by LISA.Comment: 8 pages; prepared with REVTEX 3.0 LaTeX macro

    Robust DNA Methylation in the Clonal Raider Ant Brain.

    Get PDF
    Social insects are promising model systems for epigenetics due to their immense morphological and behavioral plasticity. Reports that DNA methylation differs between the queen and worker castes in social insects [1-4] have implied a role for DNA methylation in regulating division of labor. To better understand the function of DNA methylation in social insects, we performed whole-genome bisulfite sequencing on brains of the clonal raider ant Cerapachys biroi, whose colonies alternate between reproductive (queen-like) and brood care (worker-like) phases [5]. Many cytosines were methylated in all replicates (on average 29.5% of the methylated cytosines in a given replicate), indicating that a large proportion of the C. biroi brain methylome is robust. Robust DNA methylation occurred preferentially in exonic CpGs of highly and stably expressed genes involved in core functions. Our analyses did not detect any differences in DNA methylation between the queen-like and worker-like phases, suggesting that DNA methylation is not associated with changes in reproduction and behavior in C. biroi. Finally, many cytosines were methylated in one sample only, due to either biological or experimental variation. By applying the statistical methods used in previous studies [1-4, 6] to our data, we show that such sample-specific DNA methylation may underlie the previous findings of queen- and worker-specific methylation. We argue that there is currently no evidence that genome-wide variation in DNA methylation is associated with the queen and worker castes in social insects, and we call for a more careful interpretation of the available data

    Teaching physics with 670 nm diode lasers—construction of stabilized lasers and lithium cells

    Get PDF
    We describe the construction and operation of stabilized 670 nm diode lasers for use in undergraduate teaching labs. Because they emit low‐power visible radiation, 670 nm lasers are safe and aesthetically pleasing, and thus are an attractive alternative to near‐infrared diode lasers in the undergraduate laboratory. We also describe the fabrication of a robust and reliable lithium atomic vapor cell, which can be used with the 670 nm diode lasers to perform a variety of atomic physics experiments
    corecore