1,094 research outputs found
Hybridization of multi-objective deterministic particle swarm with derivative-free local searches
The paper presents a multi-objective derivative-free and deterministic global/local hybrid algorithm for the efficient and effective solution of simulation-based design optimization (SBDO) problems. The objective is to show how the hybridization of two multi-objective derivative-free global and local algorithms achieves better performance than the separate use of the two algorithms in solving specific SBDO problems for hull-form design. The proposed method belongs to the class of memetic algorithms, where the global exploration capability of multi-objective deterministic particle swarm optimization is enriched by exploiting the local search accuracy of a derivative-free multi-objective line-search method. To the authors best knowledge, studies are still limited on memetic, multi-objective, deterministic, derivative-free, and evolutionary algorithms for an effective and efficient solution of SBDO for hull-form design. The proposed formulation manages global and local searches based on the hypervolume metric. The hybridization scheme uses two parameters to control the local search activation and the number of function calls used by the local algorithm. The most promising values of these parameters were identified using forty analytical tests representative of the SBDO problem of interest. The resulting hybrid algorithm was finally applied to two SBDO problems for hull-form design. For both analytical tests and SBDO problems, the hybrid method achieves better performance than its global and local counterparts
Assessment of poststress left ventricular ejection fraction by gated SPECT: comparison with equilibrium radionuclide angiocardiography
PURPOSE: We compared left ventricular (LV) ejection fraction obtained by gated SPECT with that obtained by equilibrium radionuclide angiocardiography in a large cohort of patients.
METHODS: Within 1 week, 514 subjects with suspected or known coronary artery disease underwent same-day stress-rest (99m)Tc-sestamibi gated SPECT and radionuclide angiocardiography. For both studies, data were acquired 30 min after completion of exercise and after 3 h rest.
RESULTS: In the overall study population, a good correlation between ejection fraction measured by gated SPECT and by radionuclide angiocardiography was observed at rest (r=0.82, p<0.0001) and after stress (r=0.83, p<0.0001). In Bland-Altman analysis, the mean differences in ejection fraction (radionuclide angiocardiography minus gated SPECT) were -0.6% at rest and 1.7% after stress. In subjects with normal perfusion (n=362), a good correlation between ejection fraction measured by gated SPECT and by radionuclide angiocardiography was observed at rest (r=0.72, p<0.0001) and after stress (r=0.70, p<0.0001) and the mean differences in ejection fraction were -0.9% at rest and 1.4% after stress. Also in patients with abnormal perfusion (n=152), a good correlation between the two techniques was observed both at rest (r=0.89, p<0.0001) and after stress (r=0.90, p<0.0001) and the mean differences in ejection fraction were 0.1% at rest and 2.5% after stress.
CONCLUSION: In a large study population, a good agreement was observed in the evaluation of LV ejection fraction between gated SPECT and radionuclide angiocardiography. However, in patients with perfusion abnormalities, a slight underestimation in poststress LV ejection fraction was observed using gated SPECT as compared to equilibrium radionuclide angiocardiography
A comparative study of Gaussian Graphical Model approaches for genomic data
The inference of networks of dependencies by Gaussian Graphical models on
high-throughput data is an open issue in modern molecular biology. In this
paper we provide a comparative study of three methods to obtain small sample
and high dimension estimates of partial correlation coefficients: the
Moore-Penrose pseudoinverse (PINV), residual correlation (RCM) and
covariance-regularized method . We first compare them on simulated
datasets and we find that PINV is less stable in terms of AUC performance when
the number of variables changes. The two regularized methods have comparable
performances but is much faster than RCM. Finally, we present the
results of an application of for the inference of a gene network
for isoprenoid biosynthesis pathways in Arabidopsis thaliana.Comment: 7 pages, 1 figure, RevTex4, version to appear in the proceedings of
1st International Workshop on Pattern Recognition, Proteomics, Structural
Biology and Bioinformatics: PR PS BB 2011, Ravenna, Italy, 13 September 201
GIADA performance during Rosetta mission scientific operations at comet 67P
The Grain Impact Analyser and Dust Accumulator (GIADA) instrument onboard Rosetta studied the dust environment of comet 67P/Churyumov–Gerasimenko from 3.7 au inbound, through perihelion, to 3.8 au outbound, measuring the dust flow and the dynamic properties of individual particles. GIADA is composed of three subsystems: 1) Grain Detection System (GDS); 2) Impact Sensor (IS); and 3) Micro-Balances System (MBS). Monitoring the subsystems’ performance during operations is an important element for the correct calibration of scientific measurements. In this paper, we analyse the GIADA inflight calibration data obtained by internal calibration devices for the three subsystems during the period from 1 August 2014 to 31 October 2015. The calibration data testify a nominal behaviour of the instrument during these fifteen months of mission; the only exception is a minor loss of sensitivity for one of the two GDS receivers, attributed to dust contamination
Noninvasive Ultrasound Monitoring of Embryonic and Fetal Development in Chinchilla lanigera to Predict Gestational Age: Preliminary Evaluation of This Species as a Novel Animal Model of Human Pregnancy
Ultrasound is a noninvasive routine method that allows real-time monitoring of fetal development in utero to determine gestational age and to detect congenital anomalies and multiple pregnancies. To date, the developmental biology of Chinchilla lanigera has not yet been characterized. This species has been found to undergo placentation, long gestation, and fetal dimensions similar to those in humans. The aim of this study was to assess the use of high-frequency ultrasound (HFUS) and clinical ultrasound (US) to predict gestational age in chinchillas and evaluate the possibility of this species as a new animal model for the study of human pregnancy. In this study, 35 pregnant females and a total of 74 embryos and fetuses were monitored. Ultrasound examination was feasible in almost all chinchilla subjects. It was possible to monitor the chinchilla embryo with HFUS from embryonic day (E) 15 to 60 and with US from E15 to E115 due to fetus dimensions. The placenta could be visualized and measured with HFUS from E15, but not with US until E30. From E30, the heartbeat became detectable and it was possible to measure fetal biometrics. In the late stages of pregnancy, stomach, eyes, and lenses became visible. Our study demonstrated the importance of employing both techniques while monitoring embryonic and fetal development to obtain an overall and detailed view of all structures and to recognize any malformation at an early stage. Pregnancy in chinchillas can be confirmed as early as the 15th day postmating, and sonographic changes and gestational age are well correlated. The quantitative measurements of fetal and placental growth performed in this study could be useful in setting up a database for comparison with human fetal ultrasounds. We speculate that, in the future, the chinchilla could be used as an animal model for the study of US in human pregnancy
Enniatin and Beauvericin Biosynthesis in Fusarium Species: Production Profiles and Structural Determinant Prediction
Citation: Liuzzi, V. C., Mirabelli, V., Cimmarusti, M. T., Haidukowski, M., Leslie, J. F., Logrieco, A. F., . . . Mule, G. (2017). Enniatin and Beauvericin Biosynthesis in Fusarium Species: Production Profiles and Structural Determinant Prediction. Toxins, 9(2), 17. doi:10.3390/toxins9020045Members of the fungal genus Fusarium can produce numerous secondary metabolites, including the nonribosomal mycotoxins beauvericin (BEA) and enniatins (ENNs). Both mycotoxins are synthesized by the multifunctional enzyme enniatin synthetase (ESYN1) that contains both peptide synthetase and S-adenosyl-L-methionine-dependent N-methyltransferase activities. Several Fusarium species can produce ENNs, BEA or both, but the mechanism(s) enabling these differential metabolic profiles is unknown. In this study, we analyzed the primary structure of ESYN1 by sequencing esyn1 transcripts from different Fusarium species. We measured ENNs and BEA production by ultra-performance liquid chromatography coupled with photodiode array and Acquity QDa mass detector (UPLC-PDA-QDa) analyses. We predicted protein structures, compared the predictions by multivariate analysis methods and found a striking correlation between BEA/ENN-producing profiles and ESYN1 three-dimensional structures. Structural differences in the beta strand's Asn789-Ala793 and His797-Asp802 portions of the amino acid adenylation domain can be used to distinguish BEA/ENN-producing Fusarium isolates from those that produce only ENN
Gas Analysis and Monitoring Systems for the RPC Detector of CMS at LHC
The Resistive Plate Chambers (RPC) detector of the CMS experiment at the LHC
proton collider (CERN, Switzerland) will employ an online gas analysis and
monitoring system of the freon-based gas mixture used. We give an overview of
the CMS RPC gas system, describe the project parameters and first results on
gas-chromatograph analysis. Finally, we report on preliminary results for a set
of monitor RPC.Comment: 9 pages, 8 figures. Presented by Stefano Bianco (Laboratori Nazionali
di Frascati dell'INFN) at the IEEE NSS, San Diego (USA), October 200
Status of the Cylindical-GEM project for the KLOE-2 Inner Tracker
The status of the R&D on the Cylindrical-GEM (CGEM) detector foreseen as
Inner Tracker for KLOE-2, the upgrade of the KLOE experiment at the DAFNE
phi-factory, will be presented. The R&D includes several activities: i) the
construction and complete characterization of the full-size CGEM prototype,
equipped with 650 microns pitch 1-D longitudinal strips; ii) the study of the
2-D readout with XV patterned strips and operation in magnetic field (up to
1.5T), performed with small planar prototypes in a dedicated test at the H4-SPS
beam facility; iii) the characterization of the single-mask GEM technology for
the realization of large-area GEM foils.Comment: 4 pages, 10 figures, Presented at Vienna Conference on
Instrumentation (Feb 15-20, 2010, Vienna, Austria). Submitted to the
Proceeding
Small-molecule inhibitors of proteins involved in base excision repair potentiate the anti-tumorigenic effect of existing chemotherapeutics and irradiation
There has been a recent upsurge in the development of small-molecule inhibitors specific to DNA repair proteins or proteins peripherally involved in base excision repair and the DNA damage response. These specific, nominally toxic inhibitors are able to potentiate the effect of existing cancer cell treatments in a wide array of cancers. One of the largest obstacles to overcome in the treatment of cancer is incomplete killing with initial cancer treatments, leading to resistant cancer. The progression of our understanding of cancer and normal cell responses to DNA damage has allowed us to develop biomarkers that we can use to help us predict responses of cancers, more specifically target cancer cells and overcome resistance. Initial successes using these small-molecule DNA repair inhibitors in target-validation experiments and in the early stages of clinical trials indicate an important role for these inhibitors, and allow for the possibility of a future in which cancers are potentially treated in a highly specific, individual manner
Modeling Shock Propagation on Supply Chain Networks: A Stochastic Logistic-Type Approach
Supply Chains have been more and more suffering from unexpected industrial, natural events, or epidemics that might disrupt the normal flow of materials, information, and money. The recent pandemic triggered by the outbreak of the new COVID-19 has pointed out the increasing vulnerability of supply chain networks, prompting companies (and governments) to implement specific policies and actions to control and reduce the spread of the disease across the network, and to cope with exogenous shocks. In this paper, we present a stochastic Susceptible-Infected-Susceptible (SIS) framework to model the spread of new epidemics across different distribution networks and determine social distancing/treatment policies in the case of local and global networks. We highlight the relevance of adaptability and flexibility of decisions in unstable and unpredictable scenarios
- …
