7,476 research outputs found

    Simple Non-Markovian Microscopic Models for the Depolarizing Channel of a Single Qubit

    Full text link
    The archetypal one-qubit noisy channels ---depolarizing, phase-damping and amplitude-damping channels--- describe both Markovian and non-Markovian evolution. Simple microscopic models for the depolarizing channel, both classical and quantum, are considered. Microscopic models which describe phase damping and amplitude damping channels are briefly reviewed.Comment: 13 pages, 2 figures. Title corrected. Paper rewritten. Added references. Some typos and errors corrected. Author adde

    Forza gravitazionale e forza elettrostatica: storia e confronto

    Get PDF
    In questo articolo viene proposta un\u2019attivit\ue0 didattica riguardante il confronto tra la forza gravitazionale, ovvero la legge di gravitazione universale di Newton, e la forza elettrostatica, ovvero l\u2019interazione tra due cariche puntiformi scoperta da Charles Coulomb. Inizialmente si introduce uno schema di progettazione didattica, rivolta a studenti del quinto anno di un liceo scientifico, basato su metodologie didattiche standard. Successivamente gli argomenti della proposta vengono trattati in dettaglio, riassumendo i passaggi storici essenziali. Infine, un confronto su scala microscopica e macroscopica dei due tipi di forze \ue8 presentato, mettendo in luce analogie e differenze utili ai fini didattici

    Quantumness and memory of one qubit in a dissipative cavity under classical control

    Get PDF
    Hybrid quantum–classical systems constitute a promising architecture for useful control strategies of quantum systems by means of a classical device. Here we provide a comprehensive study of the dynamics of various manifestations of quantumness with memory effects, identified by non-Markovianity, for a qubit controlled by a classical field and embedded in a leaky cavity. We consider both Leggett–Garg inequality and quantum witness as experimentally-friendly indicators of quantumness, also studying the geometric phase of the evolved (noisy) quantum state. We show that, under resonant qubit-classical field interaction, a stronger coupling to the classical control leads to enhancement of quantumness despite a disappearance of non-Markovianity. Differently, increasing the qubit-field detuning (out-of-resonance) reduces the nonclassical behavior of the qubit while recovering non-Markovian features. We then find that the qubit geometric phase can be remarkably preserved irrespective of the cavity spectral width via strong coupling to the classical field. The controllable interaction with the classical field inhibits the effective time-dependent decay rate of the open qubit. These results supply practical insights towards a classical harnessing of quantum properties in a quantum information scenari

    Unifying approach to the quantification of bipartite correlations by Bures distance

    Full text link
    The notion of distance defined on the set of states of a composite quantum system can be used to quantify total, quantum and classical correlations in a unifying way. We provide new closed formulae for classical and total correlations of two-qubit Bell-diagonal states by considering the Bures distance. Complementing the known corresponding expressions for entanglement and more general quantum correlations, we thus complete the quantitative hierarchy of Bures correlations for Bell-diagonal states. We then explicitly calculate Bures correlations for two relevant families of states: Werner states and rank-2 Bell-diagonal states, highlighting the subadditivity which holds for total correlations with respect to the sum of classical and quantum ones when using Bures distance. Finally, we analyse a dynamical model of two independent qubits locally exposed to non-dissipative decoherence channels, where both quantum and classical correlations measured by Bures distance exhibit freezing phenomena, in analogy with other known quantifiers of correlations.Comment: 18 pages, 4 figures; published versio

    Hidden entanglement in the presence of random telegraph dephasing noise

    Full text link
    Entanglement dynamics of two noninteracting qubits, locally affected by random telegraph noise at pure dephasing, exhibits revivals. These revivals are not due to the action of any nonlocal operation, thus their occurrence may appear paradoxical since entanglement is by definition a nonlocal resource. We show that a simple explanation of this phenomenon may be provided by using the (recently introduced) concept of "hidden" entanglement, which signals the presence of entanglement that may be recovered with the only help of local operations.Comment: 8 pages, 1 figure, submitted to Physica Scripta on September 17th 201

    Entanglement degradation in the solid state: interplay of adiabatic and quantum noise

    Get PDF
    We study entanglement degradation of two non-interacting qubits subject to independent baths with broadband spectra typical of solid state nanodevices. We obtain the analytic form of the concurrence in the presence of adiabatic noise for classes of entangled initial states presently achievable in experiments. We find that adiabatic (low frequency) noise affects entanglement reduction analogously to pure dephasing noise. Due to quantum (high frequency) noise, entanglement is totally lost in a state-dependent finite time. The possibility to implement on-chip both local and entangling operations is briefly discussed.Comment: Replaced with published version. Minor change

    Relations between entanglement and purity in non-Markovian dynamics

    Full text link
    Knowledge of the relationships among different features of quantumness, like entanglement and state purity, is important from both fundamental and practical viewpoints. Yet, this issue remains little explored in dynamical contexts for open quantum systems. We address this problem by studying the dynamics of entanglement and purity for two-qubit systems using paradigmatic models of radiation-matter interaction, with a qubit being isolated from the environment (spectator configuration). We show the effects of the corresponding local quantum channels on an initial two-qubit pure entangled state in the concurrence-purity diagram and find the conditions which enable dynamical closed formulas of concurrence, used to quantify entanglement, as a function of purity. We finally discuss the usefulness of these relations in assessing entanglement and purity thresholds which allow noisy quantum teleportation. Our results provide new insights about how different properties of composite open quantum systems behave and relate each other during quantum evolutions.Comment: 16 Pages, 10 Figures. One author added. Improved version with more references and comment

    Revival of quantum correlations without system-environment back-action

    Get PDF
    Revivals of quantum correlations have often been explained in terms of back-action on quantum systems by their quantum environment(s). Here we consider a system of two independently evolving qubits, each locally interacting with a classical random external field. The environments of the qubits are also independent, and there is no back-action on the qubits. Nevertheless, entanglement, quantum discord and classical correlations between the two qubits may revive in this model. We explain the revivals in terms of correlations in a classical-quantum state of the environments and the qubits. Although classical states cannot store entanglement on their own, they can play a role in storing and reviving entanglement. It is important to know how the absence of back-action, or modelling an environment as classical, affects the kind of system time evolutions one is able to describe. We find a class of global time evolutions where back-action is absent and for which there is no loss of generality in modelling the environment as classical. Finally, we show that the revivals can be connected with the increase of a parameter used to quantify non-Markovianity of the single-qubit dynamics.Comment: 8 pages, 4 figures; this version to appear in Phys. Rev.

    Universality of Schmidt decomposition and particle identity

    Get PDF
    Schmidt decomposition is a widely employed tool of quantum theory which plays a key role for distinguishable particles in scenarios such as entanglement characterization, theory of measurement and state purification. Yet, its formulation for identical particles remains controversial, jeopardizing its application to analyze general many-body quantum systems. Here we prove, using a newly developed approach, a universal Schmidt decomposition which allows faithful quantification of the physical entanglement due to the identity of particles. We find that it is affected by single-particle measurement localization and state overlap. We study paradigmatic two-particle systems where identical qubits and qutrits are located in the same place or in separated places. For the case of two qutrits in the same place, we show that their entanglement behavior, whose physical interpretation is given, differs from that obtained before by different methods. Our results are generalizable to multiparticle systems and open the way for further developments in quantum information processing exploiting particle identity as a resource
    corecore