22 research outputs found
Phyllosilicates as earth-abundant layered materials for electronics and optoelectronics: Prospects and challenges in their ultrathin limit
Phyllosilicate minerals are an emerging class of naturally occurring layered
insulators with large bandgap energy that have gained attention from the
scientific community. This class of lamellar materials has been recently
explored at the ultrathin two-dimensional level due to their specific
mechanical, electrical, magnetic, and optoelectronic properties, which are
crucial for engineering novel devices (including heterostructures). Due to
these properties, phyllosilicates minerals can be considered promising low-cost
nanomaterials for future applications. In this Perspective article, we will
present relevant features of these materials for their use in potential
2D-based electronic and optoelectronic applications, also discussing some of
the major challenges in working with them.Comment: 29 pages, 4 figure
Enhanced electrochemical activity using vertically aligned carbon nanotube electrodes grown on carbon fiber
Ultra-weak interlayer coupling in two-dimensional gallium selenide
By using symmetry arguments and first principles calculations, we study the stability of β and ε few-layer GaSe and their low-frequency interlayer breathing and shear modes, unveiling uncommon lubricant properties and exfoliability at the nanoscale.</p
Superior stiffness and vibrational spectroscopic signature of two-dimensional diamond-like carbon nitrides
Stable holey two-dimensional <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi mathvariant="normal">C</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:mi mathvariant="normal">N</mml:mi></mml:mrow></mml:math> structures with tunable electronic structure
Raman spectrum of layered tilkerodeite (Pd<sub>2</sub>HgSe<sub>3</sub>) topological insulator: the palladium analogue of jacutingaite (Pt<sub>2</sub>HgSe<sub>3</sub>)
Abstract
The layered mineral tilkerodeite (Pd2HgSe3), the palladium analogue of jacutingaite (Pt2HgSe3), is a promising quantum spin hall insulator for low-power nanospintronics. In this context, a fast and reliable assessment of its structure is key for exploring fundamental properties and architecture of new Pd2HgSe3-based devices. Here, we investigate the first-order Raman spectrum in high-quality, single-crystal bulk tilkerodeite, and analyze the wavenumber relation to its isostructural jacutingaite analogue. By using polarized Raman spectroscopy, symmetry analysis, and first-principles calculations, we assigned all the Raman-active phonons in tilkerodeite, unveiling their wavenumbers, atomic displacement patterns, and symmetries. Our calculations used several exchange–correlation functionals within the density functional perturbation theory framework, reproducing both structure and Raman-active phonon wavenumbers in excellent agreement with experiments. Also, it was found that the influence of the spin–orbit coupling can be neglected in the study of these properties. Finally, we compared the wavenumber and atomic displacement patterns of corresponding Raman-active modes in tilkerodeite and jacutingaite, and found that the effect of the Pd and Pt masses can be neglected on reasoning their wavenumber differences. From this analysis, tilkerodeite is found to be mechanically weaker than jacutingaite against the atomic displacement patterns of these modes. Our findings advance the understanding of the structural properties of a recently discovered layered topological insulator, fundamental to further exploring its electronic, optical, thermal, and mechanical properties, and for device fabrication.</jats:p
Charge-transfer optical absorption mechanism of DNA:Ag-nanocluster complexes
Optical properties of DNA:Ag-nanoclusters complexes have been successfully applied experimentally in Chemistry, Physics, and Biology. Nevertheless, the mechanisms behind their optical activity remain unresolved. In this work, we present a time-dependent density functional study of optical absorption in DNA:
Ag
4
. In all 23 different complexes investigated, we obtain new absorption peaks in the visible region that are not found in either the isolated
Ag
4
or isolated DNA base pairs. Absorption from red to green are predominantly of charge-transfer character, from the
Ag
4
to the DNA fragment, while absorption in the blue-violet range are mostly associated to electronic transitions of a mixed character, involving either DNA-
Ag
4
hybrid orbitals or intracluster orbitals. We also investigate the role of exchange-correlation functionals in the calculated optical spectra. Significant differences are observed between the calculations using the PBE functional (without exact exchange) and the CAM-B3LYP functional (which partly includes exact exchange). Specifically, we observe a tendency of charge-transfer excitations to involve purines bases, and the PBE spectra error is more pronounced in the complexes where the Ag cluster is bound to the purines. Finally, our results also highlight the importance of adding both the complementary base pair and the sugar-phosphate backbone in order to properly characterize the absorption spectrum of DNA:Ag complexes
