989 research outputs found

    A new multigroup method for cross-sections that vary rapidly in energy

    Full text link
    We present a numerical method for solving the time-independent thermal radiative transfer (TRT) equation or the neutron transport (NT) equation when the opacity or cross-section varies rapidly in energy (frequency). The approach is based on a rigorous homogenization of the TRT/NT equation in the energy (frequency) variable. Discretization of the homogenized TRT/NT equation results in a multigroup-type system, and can therefore be solved by standard methods. We demonstrate the accuracy and efficiency of the approach on three model problems. First we consider the Elsasser band model with constant temperature and a small line spacing. Second, we consider a neutron transport application for fast neutrons incident on iron, where the characteristic resonance spacing necessitates about 16,000 energy discretization parameters if Planck-weighted cross sections are used. Third, we consider an atmospheric TRT problem with an opacity corresponding to water vapor. For all three problems, we demonstrate that we can achieve between 0.1 and 1 percent relative error in the solution, and with several orders of magnitude fewer parameters than a standard multigroup formulation with a comparable accuracy

    Large-eddy simulations of turbulent flow for grid-to-rod fretting in nuclear reactors

    Full text link
    The grid-to-rod fretting (GTRF) problem in pressurized water reactors is a flow-induced vibration problem that results in wear and failure of the fuel rods in nuclear assemblies. In order to understand the fluid dynamics of GTRF and to build an archival database of turbulence statistics for various configurations, implicit large-eddy simulations of time-dependent single-phase turbulent flow have been performed in 3x3 and 5x5 rod bundles with a single grid spacer. To assess the computational mesh and resolution requirements, a method for quantitative assessment of unstructured meshes with no-slip walls is described. The calculations have been carried out using Hydra-TH, a thermal-hydraulics code developed at Los Alamos for the Consortium for Advanced Simulation of Light water reactors, a United States Department of Energy Innovation Hub. Hydra-TH uses a second-order implicit incremental projection method to solve the single-phase incompressible Navier-Stokes equations. The simulations explicitly resolve the large scale motions of the turbulent flow field using first principles and rely on a monotonicity-preserving numerical technique to represent the unresolved scales. Each series of simulations for the 3x3 and 5x5 rod-bundle geometries is an analysis of the flow field statistics combined with a mesh-refinement study and validation with available experimental data. Our primary focus is the time history and statistics of the forces loading the fuel rods. These hydrodynamic forces are believed to be the key player resulting in rod vibration and GTRF wear, one of the leading causes for leaking nuclear fuel which costs power utilities millions of dollars in preventive measures. We demonstrate that implicit large-eddy simulation of rod-bundle flows is a viable way to calculate the excitation forces for the GTRF problem.Comment: Accepted for publication in Nuclear Engineering and Design on June 12, 201

    Study of fast response thermocouple measurement of temperatures in cryogenic gases

    Get PDF
    Thermocouples fabricated from uninsulated small diameter wire have fast reproducible response times. The thermocouple is thermally isolated from its supports by making the leads of sufficient length so that the heat conduction down the leads is small and assuming that the leads adjacent to the junction are subjected to the same thermal conditions

    Pharmacist intervention in primary care to improve outcomes in patients with left ventricular systolic dysfunction

    Get PDF
    <b>Background</b> Meta-analysis of small trials suggests that pharmacist-led collaborative review and revision of medical treatment may improve outcomes in heart failure.<p></p> <b>Methods and results</b> We studied patients with left ventricular systolic dysfunction in a cluster-randomized controlled, event driven, trial in primary care. We allocated 87 practices (1090 patients) to pharmacist intervention and 87 practices (1074 patients) to usual care. The intervention was delivered by non-specialist pharmacists working with family doctors to optimize medical treatment. The primary outcome was a composite of death or hospital admission for worsening heart failure. This trial is registered, number ISRCTN70118765. The median follow-up was 4.7 years. At baseline, 86% of patients in both groups were treated with an angiotensin-converting enzyme inhibitor or an angiotensin receptor blocker. In patients not receiving one or other of these medications, or receiving less than the recommended dose, treatment was started, or the dose increased, in 33.1% of patients in the intervention group and in 18.5% of the usual care group [odds ratio (OR) 2.26, 95% CI 1.64–3.10; P< 0.001]. At baseline, 62% of each group were treated with a β-blocker and the proportions starting or having an increase in the dose were 17.9% in the intervention group and 11.1% in the usual care group (OR 1.76, 95% CI 1.31–2.35; P< 0.001). The primary outcome occurred in 35.8% of patients in the intervention group and 35.4% in the usual care group (hazard ratio 0.97, 95% CI 0.83–1.14; P = 0.72). There was no difference in any secondary outcome.<p></p> <b>Conclusion</b> A low-intensity, pharmacist-led collaborative intervention in primary care resulted in modest improvements in prescribing of disease-modifying medications but did not improve clinical outcomes in a population that was relatively well treated at baseline

    Application of advanced technology to space automation

    Get PDF
    Automated operations in space provide the key to optimized mission design and data acquisition at minimum cost for the future. The results of this study strongly accentuate this statement and should provide further incentive for immediate development of specific automtion technology as defined herein. Essential automation technology requirements were identified for future programs. The study was undertaken to address the future role of automation in the space program, the potential benefits to be derived, and the technology efforts that should be directed toward obtaining these benefits

    Evaluation of automated decisionmaking methodologies and development of an integrated robotic system simulation, volume 2, part 1. Appendix A: Software documentation

    Get PDF
    Documentation of the preliminary software developed as a framework for a generalized integrated robotic system simulation is presented. The program structure is composed of three major functions controlled by a program executive. The three major functions are: system definition, analysis tools, and post processing. The system definition function handles user input of system parameters and definition of the manipulator configuration. The analysis tools function handles the computational requirements of the program. The post processing function allows for more detailed study of the results of analysis tool function executions. Also documented is the manipulator joint model software to be used as the basis of the manipulator simulation which will be part of the analysis tools capability

    Evaluation of automated decisionmaking methodologies and development of an integrated robotic system simulation. Volume 2, Part 2: Appendixes B, C, D and E

    Get PDF
    The derivation of the equations is presented, the rate control algorithm described, and simulation methodologies summarized. A set of dynamics equations that can be used recursively to calculate forces and torques acting at the joints of an n link manipulator given the manipulator joint rates are derived. The equations are valid for any n link manipulator system with any kind of joints connected in any sequence. The equations of motion for the class of manipulators consisting of n rigid links interconnected by rotary joints are derived. A technique is outlined for reducing the system of equations to eliminate contraint torques. The linearized dynamics equations for an n link manipulator system are derived. The general n link linearized equations are then applied to a two link configuration. The coordinated rate control algorithm used to compute individual joint rates when given end effector rates is described. A short discussion of simulation methodologies is presented

    Mechanism, dynamics, and biological existence of multistability in a large class of bursting neurons

    Full text link
    Multistability, the coexistence of multiple attractors in a dynamical system, is explored in bursting nerve cells. A modeling study is performed to show that a large class of bursting systems, as defined by a shared topology when represented as dynamical systems, is inherently suited to support multistability. We derive the bifurcation structure and parametric trends leading to multistability in these systems. Evidence for the existence of multirhythmic behavior in neurons of the aquatic mollusc Aplysia californica that is consistent with our proposed mechanism is presented. Although these experimental results are preliminary, they indicate that single neurons may be capable of dynamically storing information for longer time scales than typically attributed to nonsynaptic mechanisms.Comment: 24 pages, 8 figure

    Sharp interface limits of phase-field models

    Full text link
    The use of continuum phase-field models to describe the motion of well-defined interfaces is discussed for a class of phenomena, that includes order/disorder transitions, spinodal decomposition and Ostwald ripening, dendritic growth, and the solidification of eutectic alloys. The projection operator method is used to extract the ``sharp interface limit'' from phase field models which have interfaces that are diffuse on a length scale ξ\xi. In particular,phase-field equations are mapped onto sharp interface equations in the limits ξκ1\xi \kappa \ll 1 and ξv/D1\xi v/D \ll 1, where κ\kappa and vv are respectively the interface curvature and velocity and DD is the diffusion constant in the bulk. The calculations provide one general set of sharp interface equations that incorporate the Gibbs-Thomson condition, the Allen-Cahn equation and the Kardar-Parisi-Zhang equation.Comment: 17 pages, 9 figure
    corecore