38,933 research outputs found

    Glassy dynamics and dynamical heterogeneity in colloids

    Full text link
    Concentrated colloidal suspensions are a well-tested model system which has a glass transition. Colloids are suspensions of small solid particles in a liquid, and exhibit glassy behavior when the particle concentration is high; the particles are roughly analogous to individual molecules in a traditional glass. Because the particle size can be large (100 nm - 1000 nm), these samples can be studied with a variety of optical techniques including microscopy and dynamic light scattering. Here we review the phenomena associated with the colloidal glass transition, and in particular discuss observations of spatial and temporally heterogeneous dynamics within colloidal samples near the glass transition. Although this Chapter focuses primarily on results from hard-sphere-like colloidal particles, we also discuss other colloidal systems with attractive or soft repulsive interactions.Comment: Chapter of "Dynamical heterogeneities in glasses, colloids, and granular media", Eds.: L. Berthier, G. Biroli, J-P Bouchaud, L. Cipelletti and W. van Saarloos (Oxford University Press, to appear), more info at http://w3.lcvn.univ-montp2.fr/~lucacip/DH_book.ht

    Phenomenology of a light scalar: the dilaton

    Full text link
    We make use of the language of non-linear realizations to analyze electro-weak symmetry breaking scenarios in which a light dilaton emerges from the breaking of a nearly conformal strong dynamics, and compare the phenomenology of the dilaton to that of the well motivated light composite Higgs scenario. We argue that -- in addition to departures in the decay/production rates into massless gauge bosons mediated by the conformal anomaly -- characterizing features of the light dilaton scenario (as well as other scenarios admitting a light CP-even scalar not directly related to the breaking of the electro-weak symmetry) are off-shell events at high invariant mass involving two longitudinally polarized vector bosons and a dilaton, and tree-level flavor violating processes. Accommodating both electro-weak precision measurements and flavor constraints appears especially challenging in the ambiguous scenario in which the Higgs and the dilaton fields strongly mix. We show that warped higgsless models of electro-weak symmetry breaking are explicit and tractable realizations of this limiting case. The relation between the naive radion profile often adopted in the study of holographic realizations of the light dilaton scenario and the actual dynamical dilaton field is clarified in the Appendix.Comment: 21 page

    Local Networks to Compete in the Global Era. The Italian SMEs Experience

    Get PDF
    This study is concerned with the factors that influence the cooperation among cluster-based firms. Theorists have consistently demonstrated the role and importance of economic externalities, such as knowledge spillovers, within industrial clusters. Less attention has been paid to the investigation of social based externalities, though it has been suggested that these may also accrue from geographical agglomeration. This study explores the development of cooperation between firms operating in a single industry sector and in close proximity. The results suggest that social networking has a greater influence than geographic proximity in facilitating inter-firm co-operation. A semi-structured questionnaire has been developed and the answers were analysed with a stepwise regression model.Networks, Inter-Firm Cooperation, SMEs

    Time Evolution of Non-Lethal Infectious Diseases: A Semi-Continuous Approach

    Full text link
    A model describing the dynamics related to the spreading of non-lethal infectious diseases in a fixed-size population is proposed. The model consists of a non-linear delay-differential equation describing the time evolution of the increment in the number of infectious individuals and depends upon a limited number of parameters. Predictions are in good qualitative agreement with data on influenza.Comment: 21 page

    Holographic dual of free field theory

    Full text link
    We derive a holographic dual description of free quantum field theory in arbitrary dimensions, by reinterpreting the exact renormalization group, to obtain a higher spin gravity theory of the general type which had been proposed and studied as a dual theory. We show that the dual theory reproduces all correlation functions.Comment: 5 pages, 1 figure; v2: various improvement

    Posterior moments and quantiles for the normal location model with Laplace prior

    Get PDF
    We derive explicit expressions for arbitrary moments and quantiles of the posterior distribution of the location parameter eta in the normal location model with Laplace prior, and use the results to approximate the posterior distribution of sums of independent copies of eta

    Non-perturbative effective model for the Higgs sector of the Standard Model

    Full text link
    A non-perturbative effective model is derived for the Higgs sector of the standard model, described by a simple scalar theory. The renormalized couplings are determined by the derivatives of the Gaussian Effective Potential that are known to be the sum of infinite bubble graphs contributing to the vertex functions. A good agreement has been found with strong coupling lattice simulations when a comparison can be made

    Quantum Effects and Broken Symmetries in Frustrated Antiferromagnets

    Get PDF
    We investigate the interplay between frustration and zero-point quantum fluctuations in the ground state of the triangular and J1J2J_1{-}J_2 Heisenberg antiferromagnets, using finite-size spin-wave theory, exact diagonalization, and quantum Monte Carlo methods. In the triangular Heisenberg antiferromagnet, by performing a systematic size-scaling analysis, we have obtained strong evidences for a gapless spectrum and a finite value of the thermodynamic order parameter, thus confirming the existence of long-range N\'eel order.The good agreement between the finite-size spin-wave results and the exact and quantum Monte Carlo data also supports the reliability of the spin-wave expansion to describe both the ground state and the low-energy spin excitations of the triangular Heisenberg antiferromagnet. In the J1J2J_1{-}J_2 Heisenberg model, our results indicate the opening of a finite gap in the thermodynamic excitation spectrum at J2/J10.4J_2/J_1 \simeq 0.4, marking the melting of the antiferromagnetic N\'eel order and the onset of a non-magnetic ground state. In order to characterize the nature of the latter quantum-disordered phase we have computed the susceptibilities for the most important crystal symmetry breaking operators. In the ordered phase the effectiveness of the spin-wave theory in reproducing the low-energy excitation spectrum suggests that the uniform spin susceptibility of the model is very close to the linear spin-wave prediction.Comment: Review article, 44 pages, 18 figures. See also PRL 87, 097201 (2001
    corecore