75 research outputs found
Light-induced formation of dimeric LHCII
It emerges from numerous experiments that LHCII, the major photosynthetic antenna complex of plants, can appear not only in the trimeric or monomeric states but also as a dimer. We address the problem whether the dimeric form of the complex is just a simple intermediate element of the trimer–monomer transformation or if it can also be a physiologically relevant molecular organization form? Dimers of LHCII were analyzed with application of native electrophoresis, time-resolved fluorescence spectroscopy, and fluorescence correlation spectroscopy. The results reveal the appearance of two types of LHCII dimers: one formed by the dissociation of one monomer from the trimeric structure and the other formed by association of monomers into a distinctively different molecular organizational form, characterized by a high rate of chlorophyll excitation quenching. The hypothetical structure of such an energy quencher is proposed. The high light-induced LHCII dimerization is discussed as a potential element of the photoprotective response in plants
Measuring, in solution, multiple-fluorophore labeling by combining Fluorescence Correlation Spectroscopy and photobleaching
Determining the number of fluorescent entities that are coupled to a given
molecule (DNA, protein, etc.) is a key point of numerous biological studies,
especially those based on a single molecule approach. Reliable methods are
important, in this context, not only to characterize the labeling process, but
also to quantify interactions, for instance within molecular complexes. We
combined Fluorescence Correlation Spectroscopy (FCS) and photobleaching
experiments to measure the effective number of molecules and the molecular
brightness as a function of the total fluorescence count rate on solutions of
cDNA (containing a few percent of C bases labeled with Alexa Fluor 647). Here,
photobleaching is used as a control parameter to vary the experimental outputs
(brightness and number of molecules). Assuming a Poissonian distribution of the
number of fluorescent labels per cDNA, the FCS-photobleaching data could be
easily fit to yield the mean number of fluorescent labels per cDNA strand (@
2). This number could not be determined solely on the basis of the cDNA
brightness, because of both the statistical distribution of the number of
fluorescent labels and their unknown brightness when incorporated in cDNA. The
statistical distribution of the number of fluorophores labeling cDNA was
confirmed by analyzing the photon count distribution (with the cumulant
method), which showed clearly that the brightness of cDNA strands varies from
one molecule to the other.Comment: 38 pages (avec les figures
Reversible Fluorescence Photoswitching in DNA
[Image: see text] We describe the engineering of reversible fluorescence photoswitching in DNA with high-density substitution, and its applications in advanced fluorescence microscopy methods. High-density labeling of DNA with cyanine dyes can be achieved by polymerase chain reaction using a modified DNA polymerase that has been evolved to efficiently incorporate Cy3- and Cy5-labeled cytosine base analogues into double-stranded DNA. The resulting biopolymer, “CyDNA”, displays hundreds of fluorophores per DNA strand and is strongly colored and highly fluorescent, although previous observations suggest that fluorescence quenching at such high density might be a concern, especially for Cy5. Herein, we first investigate the mechanisms of fluorescence quenching in CyDNA and we suggest that two different mechanisms, aggregate formation and resonance energy transfer, are responsible for fluorescence quenching at high labeling densities. Moreover, we have been able to re-engineer CyDNA into a reversible fluorescence photoswitchable biopolymer by using the properties of the Cy3–Cy5 pair. This novel biopolymer constitutes a new class of photoactive DNA-based nanomaterial and is of great interest for advanced microscopy applications. We show that reversible fluorescence photoswitching in CyDNA can be exploited in optical lock-in detection imaging. It also lays the foundations for improved and sequence-specific super-resolution fluorescence microscopy of DNA
Microchamber Western Blotting Using Poly- l
We report a novel strategy to immobilize sodium dodecyl sulfate (SDS)-coated proteins for fully integrated microfluidic Western blotting. Polyacrylamide gel copolymerized with a cationic polymer, poly-L-lysine, effectively immobilizes all sized proteins after sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), and enables SDS-PAGE and subsequent immuno-probing in an automated microfluidic chip. Design of a poly-l-lysine conjugated polyacrylamide gel allows optimization of SDS-protein immobilization strength in the blotting gel region of the microchamber. The dependence of protein capture behavior on both the concentration of copolymerized charges and poly-lysine length is studied and gives important insight into an electrostatic immobilization mechanism. Based on analysis of protein conformation, the immobilized proteins bind with partner antibody after SDS dilution. We demonstrate each step of the microchamber Western blot, including injection, separation, transfer, immobilization, blocking, and immunoblot. The approach advances microfluidic protein immunoblotting, which is directly relevant to the widely-used SDS-PAGE based slab-gel Western blot, while saving sample volume, labor, and assay time
Comparative studies of live tapetum cells in sterile garlic (Allium sativum) and fertile leek (Allium ampeloprasum) using the fluorescence lifetime imaging analytical method
Spectroscopy of Photosynthetic Pigment-Protein Complex LHCII
Light-harvesting pigment-protein complex of photosystem II is the most abundant membrane protein in the biosphere, comprising more than half chlorophyll molecules. The protein plays a role of photosynthetic antenna, collecting solar radiation and transferring excitations towards the reaction centers, where electric charge separation takes place. Efficient excitation energy capture and transfer requires unique organization of the complex and unique photophysical properties of the accessory pigments: chlorophylls and carotenoids. LHCII is also a place where extremely harmful singlet oxygen may be generated, under strong illumination conditions. Several physical mechanisms have been found in LHCII, operating to protect the photosynthetic apparatus against light-induced damage, including chlorophyll triplet and singlet excitations quenching by carotenoids. In this paper we discuss the results of our recent studies, carried out with the application of several molecular spectroscopy techniques (electronic absorption, fluorescence, resonance Raman and FTIR), designed to investigate molecular mechanisms responsible for regulation of excitation density in LHCII. Among the most interesting findings are the light-induced molecular configuration changes of the LHCII-bound xanthophylls, leading to conformational rearrangements of the protein. These mechanisms are discussed in terms of excessive excitation quenching in the pigment-protein complex subjected to overexcitation. Such an activity seems to represent a vital regulatory process in the photosynthetic apparatus, at the molecular level, protecting plants against photodegradation
Spectroscopy of Photosynthetic Pigment-Protein Complex LHCII
Light-harvesting pigment-protein complex of photosystem II is the most abundant membrane protein in the biosphere, comprising more than half chlorophyll molecules. The protein plays a role of photosynthetic antenna, collecting solar radiation and transferring excitations towards the reaction centers, where electric charge separation takes place. Efficient excitation energy capture and transfer requires unique organization of the complex and unique photophysical properties of the accessory pigments: chlorophylls and carotenoids. LHCII is also a place where extremely harmful singlet oxygen may be generated, under strong illumination conditions. Several physical mechanisms have been found in LHCII, operating to protect the photosynthetic apparatus against light-induced damage, including chlorophyll triplet and singlet excitations quenching by carotenoids. In this paper we discuss the results of our recent studies, carried out with the application of several molecular spectroscopy techniques (electronic absorption, fluorescence, resonance Raman and FTIR), designed to investigate molecular mechanisms responsible for regulation of excitation density in LHCII. Among the most interesting findings are the light-induced molecular configuration changes of the LHCII-bound xanthophylls, leading to conformational rearrangements of the protein. These mechanisms are discussed in terms of excessive excitation quenching in the pigment-protein complex subjected to overexcitation. Such an activity seems to represent a vital regulatory process in the photosynthetic apparatus, at the molecular level, protecting plants against photodegradation
Comparative aspects and temperature dependence of [<sup>3</sup>H]1,4-dihydropyridine Ca<sup>2+</sup> channel antagonist and activator binding to neuronal and muscle membranes
Binding of [3H]nitrendipine, [3H]nimodipine, and (+)[3H]PN 200-110 to microsomal preparations of guinea pig smooth and cardiac muscle and brain synaptosomes revealed high affinity interaction with KD values in the sequence, (+)PN 200-110 > nitrendipine > nimodipine. Bmax values for a particular tissue were independent of the 1,4-dihydropyridine employed in radioligand binding at 25 °C. The temperature dependence of [3H]nitrendipine binding in cardiac and smooth muscle microsomal preparations and brain synaptosomes was measured from 0° to 37 °C and for skeletal muscle preparations from 0° to 30 °C. Bmax values increased with temperature for cardiac membranes, but did not vary in other tissues, van't Hoff plots were nonlinear in all tissues, enthalpy and entropy changes becoming increasingly negative with increasing temperature. Competition binding of the activator–antagonist enantiomeric 1,4-dihydropyridine pairs of Bay k 8644 and PN 202-791 for [3H]nitrendipine in smooth muscle did not reveal significant thermodynamic differences between activator and antagonist molecules. </jats:p
- …
