2,287 research outputs found
The Gamma Ray Pulsar Population
We apply a likelihood analysis to pulsar detections, pulsar upper limits, and
diffuse background measurements from the OSSE and EGRET instruments on the
Compton Gamma Ray Observatory to constrain the luminosity law for gamma-ray
pulsars and some properties of the gamma-ray pulsar population. We find that
the dependence of luminosity on spin period and dipole magnetic field is much
steeper at OSSE than at EGRET energies (50-200 keV and >100 MeV, respectively),
suggesting that different emission mechanisms are responsible for low- and
high-energy gamma-ray emission. Incorporating a spin-down model and assuming a
pulsar spatial distribution, we estimate the fraction of the Galactic gamma-ray
background due to unidentified pulsars and find that pulsars may be an
important component of the OSSE diffuse flux, but are most likely not important
at EGRET energies. Using measurements of the diffuse background flux from these
instruments, we are able to place constraints on the braking index, initial
spin period, and magnetic field of the Galactic pulsar population. We are also
able to constrain the pulsar birthrate to be between 1/(25 yr) and 1/(500 yr).
Our results are based on a large gamma-ray beam, but they do not scale in a
simple way with beam size. With our assumed beam size, the implied gamma-ray
efficiency for the EGRET detections is no more than 20%. We estimate that about
20 of the 169 unidentified EGRET sources are probably gamma-ray pulsars. We use
our model to predict the pulsar population that will be seen by future
gamma-ray instruments and estimate that GLAST will detect roughly 750 gamma-ray
pulsars as steady sources, only 120 of which are currently known radio pulsars.Comment: 32 pages, including figures. submitted to Ap
Are We Seeing Magnetic Axis Reorientation in the Crab and Vela Pulsars?
Variation in the angle between a pulsar's rotational and magnetic
axes would change the torque and spin-down rate. We show that sudden increases
in , coincident with glitches, could be responsible for the persistent
increases in spin-down rate that follow glitches in the Crab pulsar. Moreover,
changes in at a rate similar to that inferred for the Crab pulsar
account naturally for the very low braking index of the Vela pulsar. If
increases with time, all pulsar ages obtained from the conventional
braking model are underestimates. Decoupling of the neutron star liquid
interior from the external torque cannot account for Vela's low braking index.
Variations in the Crab's pulse profile due to changes in might be
measurable.Comment: 14 pages and one figure, Latex, uses aasms4.sty. Accepted to ApJ
Letter
Searching for sub-millisecond pulsars from highly polarized radio sources
Pulsars are among the most highly polarized sources in the universe. The NVSS
has catalogued 2 million radio sources with linear polarization measurements,
from which we have selected 253 sources, with polarization percentage greater
than 25%, as targets for pulsar searches. We believe that such a sample is not
biased by selection effects against ultra-short spin or orbit periods. Using
the Parkes 64m telescope, we conducted searches with sample intervals of 0.05
ms and 0.08 ms, sensitive to submillisecond pulsars. Unfortunately we did not
find any new pulsars.Comment: 2 pages 1 figure. To appear in "Young Neutron Stars and Their
Environments" (IAU Symposium 218, ASP Conference Proceedings), eds F. Camilo
and B. M. Gaensle
Discovery of 14 radio pulsars in a survey of the Magellanic Clouds
A systematic survey of the Large and Small Magellanic Clouds for radio
pulsars using the Parkes radio telescope and the 20-cm multibeam receiver has
resulted in the discovery of 14 pulsars and the redetection of five of the
eight previously known spin-powered pulsars believed to lie in the Magellanic
Clouds. Of the 14 new discoveries, 12 are believed to lie within Clouds, three
in the Small Cloud and nine in the Large Cloud, bringing the total number of
known spin-powered pulsars in the Clouds to 20. Averaged over all positions
within the survey area, the survey had a limiting flux density of about 0.12
mJy. Observed dispersion measures suggest that the mean free electron density
in the Magellanic Clouds is similar to that in the disk of our Galaxy. The
observed radio luminosities have little or no dependence on pulsar period or
characteristic age and the differential luminosity function is consistent with
a power-law slope of -1 as is observed for Galactic pulsars.Comment: In press, Ap
Birth and Evolution of Isolated Radio Pulsars
We investigate the birth and evolution of Galactic isolated radio pulsars. We
begin by estimating their birth space velocity distribution from proper motion
measurements of Brisken et al. (2002, 2003). We find no evidence for
multimodality of the distribution and favor one in which the absolute
one-dimensional velocity components are exponentially distributed and with a
three-dimensional mean velocity of 380^{+40}_{-60} km s^-1. We then proceed
with a Monte Carlo-based population synthesis, modelling the birth properties
of the pulsars, their time evolution, and their detection in the Parkes and
Swinburne Multibeam surveys. We present a population model that appears
generally consistent with the observations. Our results suggest that pulsars
are born in the spiral arms, with a Galactocentric radial distribution that is
well described by the functional form proposed by Yusifov & Kucuk (2004), in
which the pulsar surface density peaks at radius ~3 kpc. The birth spin period
distribution extends to several hundred milliseconds, with no evidence of
multimodality. Models which assume the radio luminosities of pulsars to be
independent of the spin periods and period derivatives are inadequate, as they
lead to the detection of too many old simulated pulsars in our simulations.
Dithered radio luminosities proportional to the square root of the spin-down
luminosity accommodate the observations well and provide a natural mechanism
for the pulsars to dim uniformly as they approach the death line, avoiding an
observed pile-up on the latter. There is no evidence for significant torque
decay (due to magnetic field decay or otherwise) over the lifetime of the
pulsars as radio sources (~100 Myr). Finally, we estimate the pulsar birthrate
and total number of pulsars in the Galaxy.Comment: 27 pages, including 15 figures, accepted by Ap
On the Unpulsed Radio Emission from J0737-3039
The double pulsar system J0737-3039 appears associated with a continuous
radio emission, nearly three times stronger than that of the two pulsars
together. If such an emission comes from a tranparent cloud its spatial extent
(> 10^13 cm) should be substantially larger than the orbital separation.
Assuming homogeneity and equipartition, the cloud magnetic field is 0.03 G and
the electron characteristic energy ~ 60 MeV. This is consistent with supposing
that relativistic electrons produced in the shock formed by the interaction of
the more luminous pulsar wind with the magnetosphere of the companion flow away
filling a larger volume. Alternatively, the unpulsed emission may directly come
from the bow shock if some kind of coherent mechanism is at work. Possible
observational signatures that can dicriminate between the two pictures are
shortly discussed.Comment: 4 pages, no figures, accepted for publication in A&A (Letters
Optical Observations of the Binary Millisecond Pulsars J2145-0750 and J0034-0534
We report on optical observations of the low-mass binary millisecond pulsar
systems J0034-0534 and J2145-0750. A faint (I=23.5) object was found to be
coincident with the timing position of PSR J2145-0750. While a galaxy or
distant main-sequence star cannot be ruled out, its magnitude is consistent
with an ancient white dwarf, as expected from evolutionary models. For PSR
J0034-0534 no objects were detected to a limiting magnitude of R=25.0,
suggesting that the white dwarf in this system is cold. Using white dwarf
cooling models, the limit on the magnitude of the PSR J0034-0534 companion
suggests that at birth the pulsar in this system may have rotated with a period
as short as 0.6 ms. These observations provide further evidence that the
magnetic fields of millisecond pulsars do not decay on time scales shorter than
1 Gyr.Comment: 6 pages, uuencoded, gz -9 compressed postscript, accepted by ApJ
Discovery of two pulsars towards the Galactic Centre
We report the discovery of two highly dispersed pulsars in the direction of
the Galactic Centre made during a survey at 3.1 GHz with the Parkes radio
telescope. Both PSRs J1745-2912 and J1746-2856 have an angular separation from
the Galactic Centre of less than 0.3 degrees and dispersion measures in excess
of 1100 cm-3pc, placing them in the top 10 pulsars when ranked on this value.
The frequency dependence of the scatter-broadening in PSR J1746-2856 is much
shallower than expected from simple theory. We believe it likely that the
pulsars are located between 150 and 500 pc from the Galactic Centre on the near
side, and are part of an excess population of neutron stars associated with the
Centre itself. A second survey made at 8.4 GHz did not detect any pulsars. This
implies either that there are not many bright, long-period pulsars at the
Galactic Centre or that the scattering is more severe at high frequencies than
current models would suggest.Comment: Submitted to MNRAS Letter
Timing the millisecond pulsars in 47 Tucanae
In the last 10 years 20 millisecond pulsars have been discovered in the
globular cluster 47 Tucanae. Hitherto, only 3 of these had published timing
solutions. Here we improve upon these 3 and present 12 new solutions. These
measurements can be used to determine a variety of physical properties of the
pulsars and of the cluster. The 15 pulsars have positions determined with
typical uncertianties of only a few milliarcsec and they are all located within
1.2 arcmin of the cluster centre. We have also measured the proper motions of 5
of the pulsars, which are consistent with the proper motion of 47 Tuc based on
Hipparcos data. The period derivatives measured for many of the pulsars are
dominated by the dynamical effects of the cluster gravitational field, and are
used to constrain the surface mass density of the cluster. All pulsars have
characteristic ages T > 170 Myr and magnetic fields B < 2.4e9 Gauss, and the
average T > 1 Gyr. We have measured the rate of advance of periastron for the
binary pulsar J0024-7204H, implying a total system mass 1.4+-0.8 solar masses.Comment: 17 pages, 11 included figures, accepted for publication in MNRA
- …
