742 research outputs found

    Technical Note: A numerical test-bed for detailed ice nucleation studies in the AIDA cloud simulation chamber

    Get PDF
    The AIDA (Aerosol Interactions and Dynamics in the Atmosphere) aerosol and cloud chamber of Forschungszentrum Karlsruhe can be used to test the ice forming ability of aerosols. The AIDA chamber is extensively instrumented including pressure, temperature and humidity sensors, and optical particle counters. Expansion cooling using mechanical pumps leads to ice supersaturation conditions and possible ice formation. In order to describe the evolving chamber conditions during an expansion, a parcel model was modified to account for diabatic heat and moisture interactions with the chamber walls. Model results are shown for a series of expansions where the initial chamber temperature ranged from &minus;20&deg;C to &minus;60&deg;C and which used desert dust as ice forming nuclei. During each expansion, the initial formation of ice particles was clearly observed. For the colder expansions there were two clear ice nucleation episodes. <br><br> In order to test the ability of the model to represent the changing chamber conditions and to give confidence in the observations of chamber temperature and humidity, and ice particle concentration and mean size, ice particles were simply added as a function of time so as to reproduce the observations of ice crystal concentration. The time interval and chamber conditions over which ice nucleation occurs is therefore accurately known, and enables the model to be used as a test bed for different representations of ice formation

    New cloud chamber experiments on the heterogeneous ice nucleation ability of oxalic acid in the immersion mode

    Get PDF
    The heterogeneous ice nucleation ability of oxalic acid in the immersion mode has been investigated by controlled expansion cooling runs with airborne, ternary solution droplets composed of, (i), sodium chloride, oxalic acid, and water (NaCl/OA/H<sub>2</sub>O) and, (ii), sulphuric acid, oxalic acid, and water (H<sub>2</sub>SO<sub>4</sub>/OA/H<sub>2</sub>O). Polydisperse aerosol populations with median diameters ranging from 0.5–0.7 μm and varying solute concentrations were prepared. The expansion experiments were conducted in the AIDA aerosol and cloud chamber of the Karlsruhe Institute of Technology at initial temperatures of 244 and 235 K. In the ternary NaCl/OA/H<sub>2</sub>O system, solid inclusions of oxalic acid, presumably nucleated as oxalic acid dihydrate, were formed by temporarily exposing the ternary solution droplets to a relative humidity below the efflorescence point of NaCl. The matrix of the crystallised NaCl particulates triggered the precipitation of the organic crystals which later remained as solid inclusions in the solution droplets when the relative humidity was subsequently raised above the deliquescence point of NaCl. The embedded oxalic acid crystals reduced the critical ice saturation ratio required for the homogeneous freezing of pure NaCl/H<sub>2</sub>O solution droplets at a temperature of around 231 K from 1.38 to about 1.32. Aqueous solution droplets with OA inclusions larger than about 0.27 μm in diameter efficiently nucleated ice by condensation freezing when they were activated to micron-sized cloud droplets at 241 K, i.e., they froze well above the homogeneous freezing temperature of pure water droplets of about 237 K. Our results on the immersion freezing potential of oxalic acid corroborate the findings from a recent study with emulsified aqueous solutions containing crystalline oxalic acid. In those experiments, the crystallisation of oxalic acid diyhdrate was triggered by a preceding homogeneous freezing cycle with the emulsion samples. The expansion cooling cycles with ternary H<sub>2</sub>SO<sub>4</sub>/OA/H<sub>2</sub>O solution droplets were aimed to analyse whether those findings can be transferred to ice nucleation experiments with airborne oxalic acid containing aerosol particles. Under our experimental conditions, the efficiency by which the surface of homogeneously nucleated ice crystals triggered the precipitation of oxalic acid dihydrate was very low, i.e., less than one out of a hundred ice crystals that were formed by homogeneous freezing in a first expansion cooling cycle left behind an ice-active organic crystal that acted as immersion freezing nucleus in a second expansion cooling cycle

    Prospective, open, multi-centre phase I/II trial to assess safety and efficacy of neoadjuvant radiochemotherapy with docetaxel and oxaliplatin in patients with adenocarcinoma of the oesophagogastric junction

    Get PDF
    Background: This phase I/II-trial assessed the dose-limiting toxicities (DLT) and maximum tolerated dose (MTD) of neoadjuvant radiochemotherapy (RCT) with docetaxel and oxaliplatin in patients with locally advanced adenocarcinoma of the oesophagogastric junction. Methods: Patients received neoadjuvant radiotherapy (50.4 Gy) together with weekly docetaxel (20 mg/m2 at dose level (DL) 1 and 2, 25 mg/m2 at DL 3) and oxaliplatin (40 mg/m2 at DL 1, 50 mg/m2 at DL 2 and 3) over 5 weeks. The primary endpoint was the DLT and the MTD of the RCT regimen. Secondary endpoints included overall response rate (ORR) and progression-free survival (PFS). Results: A total of 24 patients were included. Four patients were treated at DL 1, 13 patients at DL 2 and 7 patients at DL 3. The MTD of the RCT was considered DL 2 with docetaxel 20 mg/m2 and oxaliplatin 50 mg/m2. Objective response (CR/PR) was observed in 32% (7/22) of patients. Eighteen patients (75%) underwent surgery after RCT. The median PFS for all patients (n = 24) was 6.5 months. The median overall survival for all patients (n = 24) was 16.3 months. Patients treated at DL 2 had a median overall survival of 29.5 months. Conclusion: Neoadjuvant RCT with docetaxel 20 mg/m2 and oxaliplatin 50 mg/m2 was effective and showed a good toxicity profile. Future studies should consider the addition of targeted therapies to current neoadjuvant therapy regimens to further improve the outcome of patients with advanced cancer of the oesophagogastric junction. Trial Registration: NCT0037498

    Probing ice clouds by broadband mid-infrared extinction spectroscopy: case studies from ice nucleation experiments in the AIDA aerosol and cloud chamber

    No full text
    International audienceSeries of infrared extinction spectra of ice crystals were recorded in the 6000?800 cm-1 wavenumber regime during expansion cooling experiments in the large aerosol and cloud chamber AIDA of Forschungszentrum Karlsruhe. Either supercooled sulphuric acid solution droplets or dry mineral dust particles were added as seed aerosols to initiate ice formation after having established ice supersaturated conditions inside the chamber. The various ice nucleation runs were conducted at temperatures between 237 and 195 K, leading to median sizes of the nucleated ice particles of 1?15 µm. The measured infrared spectra were fitted with reference spectra from T-matrix calculations to retrieve the number concentration as well as the number size distribution of the generated ice clouds. The ice particles were modelled as finite circular cylinders with aspect ratios ranging from 0.5 to 3.0. Benefiting from the comprehensive diagnostic tools for the characterisation of ice clouds which are available at the AIDA facility, the infrared retrieval results with regard to the ice particle number concentration could be compared to independent measurements with various optical particle counters. This provided a unique chance to quantitatively assess potential errors or solution ambiguities in the retrieval procedure which mainly originate from the difficulty to find an appropriate shape representation for the aspherical particle habits of the ice crystals. Based on these inter-comparisons, we demonstrate that there is no standard retrieval approach which can be routinely applied to all different experimental scenarios. In particular, the concept to account for the asphericity of the ice crystals, the a priori constraints which might be imposed on the unknown number size distribution of the ice crystals (like employing an analytical distribution function), and the wavenumber range which is included in the fitting algorithm should be carefully adjusted to each single retrieval problem

    Heterogeneous ice nucleation activity of bacteria: new laboratory experiments at simulated cloud conditions

    Get PDF
    The ice nucleation activities of five different &lt;i&gt;Pseudomonas syringae&lt;/i&gt;, &lt;i&gt;Pseudomonas viridiflava&lt;/i&gt; and &lt;i&gt;Erwinia herbicola&lt;/i&gt; bacterial species and of Snomax™ were investigated in the temperature range between &amp;minus;5 and &amp;minus;15&amp;deg;C. Water suspensions of these bacteria were directly sprayed into the cloud chamber of the AIDA facility of Forschungszentrum Karlsruhe at a temperature of &amp;minus;5.7&amp;deg;C. At this temperature, about 1% of the Snomax™ cells induced immersion freezing of the spray droplets before the droplets evaporated in the cloud chamber. The living cells didn&apos;t induce any detectable immersion freezing in the spray droplets at &amp;minus;5.7&amp;deg;C. After evaporation of the spray droplets the bacterial cells remained as aerosol particles in the cloud chamber and were exposed to typical cloud formation conditions in experiments with expansion cooling to about &amp;minus;11&amp;deg;C. During these experiments, the bacterial cells first acted as cloud condensation nuclei to form cloud droplets. Then, only a minor fraction of the cells acted as heterogeneous ice nuclei either in the condensation or the immersion mode. The results indicate that the bacteria investigated in the present study are mainly ice active in the temperature range between &amp;minus;7 and &amp;minus;11&amp;deg;C with an ice nucleation (IN) active fraction of the order of 10&lt;sup&gt;&amp;minus;4&lt;/sup&gt;. In agreement to previous literature results, the ice nucleation efficiency of Snomax™ cells was much larger with an IN active fraction of 0.2 at temperatures around &amp;minus;8&amp;deg;C

    Na-O Anticorrelation and HB. VI. The chemical composition of the peculiar bulge globular cluster NGC 6388

    Get PDF
    We present the LTE abundance analysis of high resolution spectra for red giant stars in the peculiar bulge globular cluster NGC 6388. Spectra of seven members were taken using the UVES spectrograph at the ESO VLT2 and the multiobject FLAMES facility. We exclude any intrinsic metallicity spread in this cluster: on average, [Fe/H]=-0.44+/-0.01+/-0.03 dex on the scale of the present series of papers, where the first error bar refers to individual star-to-star errors and the second is systematic, relative to the cluster. Elements involved in H-burning at high temperatures show large spreads, exceeding the estimated errors in the analysis. In particular, the pairs Na and O, Al and Mg are anticorrelated and Na and Al are correlated among the giants in NGC 6388, the typical pattern observed in all galactic globular clusters studied so far. Stars in NGC 6388 shows an excess of alpha-process elements, similar to the one found in the twin bulge cluster NGC 6441. Mn is found underabundant in NGC 6388, in agreement with the average abundance ratio shown by clusters of any metallicity. Abundances of neutron-capture elements are homogeneously distributed within NGC 6388; the [Eu/Fe] ratio stands above the value found in field stars of similar metallicity

    Experimental investigation of homogeneous freezing of sulphuric acid particles in the aerosol chamber AIDA

    Get PDF
    The homogeneous freezing of supercooled H<sub>2</sub>SO<sub>4</sub>/H<sub>2</sub>O solution droplets was investigated in the aerosol chamber AIDA (Aerosol Interactions and Dynamics in the Atmosphere) of Forschungszentrum Karlsruhe. 24 freezing experiments were performed at temperatures between 189 and 235 K with aerosol particles in the diameter range 0.05 to 1 µm. Individual experiments started at homogeneous temperatures and ice saturation ratios between 0.9 and 0.95. Cloud cooling rates up to -2.8 K min<sup>-1</sup> were simulated dynamically in the chamber by expansion cooling using a mechanical pump. Depending on the cooling rate and starting temperature, freezing threshold relative humidities were exceeded after expansion time periods between about 1 and 10 min. The onset of ice formation was measured with three independent methods showing good agreement among each other. Ice saturation ratios measured at the onset of ice formation increased from about 1.4 at 231 K&nbsp; to about 1.75 at 189 K. The experimental data set including thermodynamic parameters as well as physical and chemical aerosol analysis provides a good basis for microphysical model applications

    La fiebre de Texas y los métodos para prevenirla

    Get PDF
    La fiebre de Texas es un obstáculo muy serio al desarrollo y á la prosperidad de la industria ganadera del Sud de los Estados Unidos. Ella ha sido bien comprendida desde las investigaciones y descubrimientos de Smith y Kilborne. El trabajo de estos sabios ha demostrado de un modo con cluyente que la causa de la enfermedad es un parásito intraglobular, cuyo estadio intermediario de desarrollo tiene lugar en la garrapata, formando así ésta última el factor indirecto, pero absolutamente esencial, en la producción natural de la enfermedad.Facultad de Ciencias Agrarias y Forestale
    corecore