173,924 research outputs found
Gravitational waveforms from the evaporating ACO cosmic string loop
The linearly polarized gravitational waveforms from a certain type of
rotating, evaporating cosmic string - the Allen-Casper-Ottewill loop - are
constructed and plotted over the lifetime of the loop. The formulas for the
waveforms are simple and exact, and describe waves which attenuate
self-similarly, with the amplitude and period of the waves falling off linearly
with time.Comment: 30 pages, 16 figure
Coherent instabilities of intense high-energy "white" charged-particle beams in the presence of nonlocal effects within the context of the Madelung fluid description
A hydrodynamical description of coherent instabilities that take place in the
longitudinal dynamics of a charged-particle coasting beam in a high-energy
accelerating machine is presented. This is done in the framework of the
Madelung fluid picture provided by the Thermal Wave Model. The well known
coherent instability charts in the complex plane of the longitudinal coupling
impedance for monochromatic beams are recovered. The results are also
interpreted in terms of the deterministic approach to modulational instability
analysis usually given for monochromatic large amplitude wave train propagation
governed by the nonlinear Schr\"odinger equation. The instability analysis is
then extended to a non-monochromatic coasting beam with a given thermal
equilibrium distribution, thought as a statistical ensemble of monochromatic
incoherent coasting beams ("white" beam). In this hydrodynamical framework, the
phenomenon of Landau damping is predicted without using any kinetic equation
governing the phase space evolution of the system.Comment: 14 pages, 1 figur
NASA crop calendars: Wheat, barley, oats, rye, sorghum, soybeans, corn
Crop calenders used to determine when Earth Resources Technology Satellite ERTS data would provide the most accurate wheat acreage information and to minimize the amount of ground verified information needed are presented. Since barley, oats, and rye are considered 'confusion crops, i.e., hard to differentiate from wheat in ERTS imagery, specific dates are estimated for these crops in the following stages of development: (1) seed-bed operation, (2) planting or seeding, (3) intermediate growth, (4) dormancy, (5) development of crop to full ground cover, (6) heading or tasseling, and flowering, (7) harvesting, and (8) posting-harvest operations. Dormancy dates are included for fall-snow crops. A synopsis is given of each states' growing conditions, special cropping practices, and other characteristics which are helpful in identifying crops from ERTS imagery
Development of lightweight, fire-retardant, low-smoke, high-strength, thermally stable aircraft floor paneling
Extensive fire resistance and mechanical property tests were conducted on sandwich configurations composed of resin-fiberglass laminates bonded with adhesive to Nomex honeycomb and foam core. The test results were used to select a combination of materials that would improve the fire safety of the airplane without sacrificing mechanical performance of the aircraft floor panels. A test panel is being service evaluated in a commercial aircraft
Improving fertiliser management: redefining the relationship between soil tests and crop responses for wheat in WA
Most soils in Western Australia (WA) are highly weathered with very low levels of phosphorus. WA soils initially contained adequate indigenous soil potassium for cropping but removal of potassium over time in harvested grain has gradually resulted in the some soils becoming potassium-deficient for grain production.
Fertiliser costs represent a significant part of the variable costs of growing crops in WA. Chen et al. (2009) identified the need for updated soil test interpretations due to substantial changes in farming systems, fertiliser practices and crop yield potential. The aims of this study were (1) to compile experimental data containing the standard soil test measurements and observed wheat crop yield responses for both nil and fertilised treatments across different soil types and seasons from published or unpublished sources, and (2) to critically analyse soil test-crop response relationships to derive better critical soil test values in soils and environments suitable for wheat grain production in WA
The Principle of Symmetric Criticality in General Relativity
We consider a version of Palais' Principle of Symmetric Criticality (PSC)
that is applicable to the Lie symmetry reduction of Lagrangian field theories.
PSC asserts that, given a group action, for any group-invariant Lagrangian the
equations obtained by restriction of Euler-Lagrange equations to
group-invariant fields are equivalent to the Euler-Lagrange equations of a
canonically defined, symmetry-reduced Lagrangian. We investigate the validity
of PSC for local gravitational theories built from a metric. It is shown that
there are two independent conditions which must be satisfied for PSC to be
valid. One of these conditions, obtained previously in the context of
transverse symmetry group actions, provides a generalization of the well-known
unimodularity condition that arises in spatially homogeneous cosmological
models. The other condition seems to be new. The conditions that determine the
validity of PSC are equivalent to pointwise conditions on the group action
alone. These results are illustrated with a variety of examples from general
relativity. It is straightforward to generalize all of our results to any
relativistic field theory.Comment: 46 pages, Plain TeX, references added in revised versio
Competing epidemics on complex networks
Human diseases spread over networks of contacts between individuals and a
substantial body of recent research has focused on the dynamics of the
spreading process. Here we examine a model of two competing diseases spreading
over the same network at the same time, where infection with either disease
gives an individual subsequent immunity to both. Using a combination of
analytic and numerical methods, we derive the phase diagram of the system and
estimates of the expected final numbers of individuals infected with each
disease. The system shows an unusual dynamical transition between dominance of
one disease and dominance of the other as a function of their relative rates of
growth. Close to this transition the final outcomes show strong dependence on
stochastic fluctuations in the early stages of growth, dependence that
decreases with increasing network size, but does so sufficiently slowly as
still to be easily visible in systems with millions or billions of individuals.
In most regions of the phase diagram we find that one disease eventually
dominates while the other reaches only a vanishing fraction of the network, but
the system also displays a significant coexistence regime in which both
diseases reach epidemic proportions and infect an extensive fraction of the
network.Comment: 14 pages, 5 figure
- …
