173,924 research outputs found

    Gravitational waveforms from the evaporating ACO cosmic string loop

    Full text link
    The linearly polarized gravitational waveforms from a certain type of rotating, evaporating cosmic string - the Allen-Casper-Ottewill loop - are constructed and plotted over the lifetime of the loop. The formulas for the waveforms are simple and exact, and describe waves which attenuate self-similarly, with the amplitude and period of the waves falling off linearly with time.Comment: 30 pages, 16 figure

    Coherent instabilities of intense high-energy "white" charged-particle beams in the presence of nonlocal effects within the context of the Madelung fluid description

    Full text link
    A hydrodynamical description of coherent instabilities that take place in the longitudinal dynamics of a charged-particle coasting beam in a high-energy accelerating machine is presented. This is done in the framework of the Madelung fluid picture provided by the Thermal Wave Model. The well known coherent instability charts in the complex plane of the longitudinal coupling impedance for monochromatic beams are recovered. The results are also interpreted in terms of the deterministic approach to modulational instability analysis usually given for monochromatic large amplitude wave train propagation governed by the nonlinear Schr\"odinger equation. The instability analysis is then extended to a non-monochromatic coasting beam with a given thermal equilibrium distribution, thought as a statistical ensemble of monochromatic incoherent coasting beams ("white" beam). In this hydrodynamical framework, the phenomenon of Landau damping is predicted without using any kinetic equation governing the phase space evolution of the system.Comment: 14 pages, 1 figur

    NASA crop calendars: Wheat, barley, oats, rye, sorghum, soybeans, corn

    Get PDF
    Crop calenders used to determine when Earth Resources Technology Satellite ERTS data would provide the most accurate wheat acreage information and to minimize the amount of ground verified information needed are presented. Since barley, oats, and rye are considered 'confusion crops, i.e., hard to differentiate from wheat in ERTS imagery, specific dates are estimated for these crops in the following stages of development: (1) seed-bed operation, (2) planting or seeding, (3) intermediate growth, (4) dormancy, (5) development of crop to full ground cover, (6) heading or tasseling, and flowering, (7) harvesting, and (8) posting-harvest operations. Dormancy dates are included for fall-snow crops. A synopsis is given of each states' growing conditions, special cropping practices, and other characteristics which are helpful in identifying crops from ERTS imagery

    Development of lightweight, fire-retardant, low-smoke, high-strength, thermally stable aircraft floor paneling

    Get PDF
    Extensive fire resistance and mechanical property tests were conducted on sandwich configurations composed of resin-fiberglass laminates bonded with adhesive to Nomex honeycomb and foam core. The test results were used to select a combination of materials that would improve the fire safety of the airplane without sacrificing mechanical performance of the aircraft floor panels. A test panel is being service evaluated in a commercial aircraft

    Improving fertiliser management: redefining the relationship between soil tests and crop responses for wheat in WA

    Get PDF
    Most soils in Western Australia (WA) are highly weathered with very low levels of phosphorus. WA soils initially contained adequate indigenous soil potassium for cropping but removal of potassium over time in harvested grain has gradually resulted in the some soils becoming potassium-deficient for grain production. Fertiliser costs represent a significant part of the variable costs of growing crops in WA. Chen et al. (2009) identified the need for updated soil test interpretations due to substantial changes in farming systems, fertiliser practices and crop yield potential. The aims of this study were (1) to compile experimental data containing the standard soil test measurements and observed wheat crop yield responses for both nil and fertilised treatments across different soil types and seasons from published or unpublished sources, and (2) to critically analyse soil test-crop response relationships to derive better critical soil test values in soils and environments suitable for wheat grain production in WA

    The Principle of Symmetric Criticality in General Relativity

    Get PDF
    We consider a version of Palais' Principle of Symmetric Criticality (PSC) that is applicable to the Lie symmetry reduction of Lagrangian field theories. PSC asserts that, given a group action, for any group-invariant Lagrangian the equations obtained by restriction of Euler-Lagrange equations to group-invariant fields are equivalent to the Euler-Lagrange equations of a canonically defined, symmetry-reduced Lagrangian. We investigate the validity of PSC for local gravitational theories built from a metric. It is shown that there are two independent conditions which must be satisfied for PSC to be valid. One of these conditions, obtained previously in the context of transverse symmetry group actions, provides a generalization of the well-known unimodularity condition that arises in spatially homogeneous cosmological models. The other condition seems to be new. The conditions that determine the validity of PSC are equivalent to pointwise conditions on the group action alone. These results are illustrated with a variety of examples from general relativity. It is straightforward to generalize all of our results to any relativistic field theory.Comment: 46 pages, Plain TeX, references added in revised versio

    Competing epidemics on complex networks

    Full text link
    Human diseases spread over networks of contacts between individuals and a substantial body of recent research has focused on the dynamics of the spreading process. Here we examine a model of two competing diseases spreading over the same network at the same time, where infection with either disease gives an individual subsequent immunity to both. Using a combination of analytic and numerical methods, we derive the phase diagram of the system and estimates of the expected final numbers of individuals infected with each disease. The system shows an unusual dynamical transition between dominance of one disease and dominance of the other as a function of their relative rates of growth. Close to this transition the final outcomes show strong dependence on stochastic fluctuations in the early stages of growth, dependence that decreases with increasing network size, but does so sufficiently slowly as still to be easily visible in systems with millions or billions of individuals. In most regions of the phase diagram we find that one disease eventually dominates while the other reaches only a vanishing fraction of the network, but the system also displays a significant coexistence regime in which both diseases reach epidemic proportions and infect an extensive fraction of the network.Comment: 14 pages, 5 figure
    corecore