224,295 research outputs found

    A comment on "What catch data can tell us about the status of global fisheries"

    Get PDF
    There is considerable interest in the state of the world’s natural fishery resources. The paper by Froese et al. (2012) is a recent example of applying a set of ad hoc decision rules to a time series of catch data in order to assign the world’s fisheries to categories of exploitation and hence make generalisations about their current status. They conclude that the percentage of stocks that are over-exploited is worse than previously reported in FAO (2010). The approach used by Froese et al. is based on an algorithm proposed by Froese and Kesner-Reyes (2002) which has been heavily criticised both on theoretical grounds and from simulation studies (Branch et al. 2011; Daan et al. 2011; Wilberg and Miller 2007). In their recent paper, Froese et al. (2012) produce additional analyses to support their method which assumes that maximum sustainable yield (MSY) lies in the interval (0.5Cmax, Cmax), where Cmax is the maximum observed catch in the time series. Unfortunately, these analyses do not support their contention that MSY for a particular stock is related to maximum catch in a predictable way and renders their conclusions unsaf

    Interpreting radiative efficiency in radio-loud AGNs

    Get PDF
    Author submitted version of unrefereed Nature Astronomy comment. Version in journal format available at https://rdcu.be/KH6WRadiative efficiency in radio-loud active galactic nuclei is governed by the accretion rate onto the central black hole rather than directly by the type of accreted matter; while it correlates with real differences in host galaxies and environments, it does not provide unambiguous information about particular objects.Non peer reviewedFinal Accepted Versio

    Fast inactivation in Shaker K+ channels. Properties of ionic and gating currents.

    Get PDF
    Fast inactivating Shaker H4 potassium channels and nonconducting pore mutant Shaker H4 W434F channels have been used to correlate the installation and recovery of the fast inactivation of ionic current with changes in the kinetics of gating current known as "charge immobilization" (Armstrong, C.M., and F. Bezanilla. 1977. J. Gen. Physiol. 70:567-590.). Shaker H4 W434F gating currents are very similar to those of the conducting clone recorded in potassium-free solutions. This mutant channel allows the recording of the total gating charge return, even when returning from potentials that would largely inactivate conducting channels. As the depolarizing potential increased, the OFF gating currents decay phase at -90 mV return potential changed from a single fast component to at least two components, the slower requiring approximately 200 ms for a full charge return. The charge immobilization onset and the ionic current decay have an identical time course. The recoveries of gating current (Shaker H4 W434F) and ionic current (Shaker H4) in 2 mM external potassium have at least two components. Both recoveries are similar at -120 and -90 mV. In contrast, at higher potentials (-70 and -50 mV), the gating charge recovers significantly more slowly than the ionic current. A model with a single inactivated state cannot account for all our data, which strongly support the existence of "parallel" inactivated states. In this model, a fraction of the charge can be recovered upon repolarization while the channel pore is occupied by the NH2-terminus region

    Disaggregating non-volatile memory for throughput-oriented genomics workloads

    Get PDF
    Massive exploitation of next-generation sequencing technologies requires dealing with both: huge amounts of data and complex bioinformatics pipelines. Computing architectures have evolved to deal with these problems, enabling approaches that were unfeasible years ago: accelerators and Non-Volatile Memories (NVM) are becoming widely used to enhance the most demanding workloads. However, bioinformatics workloads are usually part of bigger pipelines with different and dynamic needs in terms of resources. The introduction of Software Defined Infrastructures (SDI) for data centers provides roots to dramatically increase the efficiency in the management of infrastructures. SDI enables new ways to structure hardware resources through disaggregation, and provides new hardware composability and sharing mechanisms to deploy workloads in more flexible ways. In this paper we study a state-of-the-art genomics application, SMUFIN, aiming to address the challenges of future HPC facilities.This work is partially supported by the European Research Council (ERC) under the EU Horizon 2020 programme (GA 639595), the Spanish Ministry of Economy, Industry and Competitivity (TIN2015-65316-P) and the Generalitat de Catalunya (2014-SGR-1051).Peer ReviewedPostprint (author's final draft

    Determination of the urinary aglycone metabolites of vitamin K by HPLC with redox-mode electrochemical detection

    Get PDF
    We describe a method for the determination of the two major urinary metabolites of vitamin K as the methyl esters of their agyclone structures, 2-methyl-3-(3-3-carboxymethylpropyl)-1,4-naphthoquinone (5C-side-chain metabolite) and 2-methyl-3-(5-carboxy-3-methyl-2-pentenyl)-1,4-naphthoquinone (7C-side-chain metabolite), by HPLC with electrochemical detection (ECD) in the redox mode. Urinary salts were removed by reversed-phase (C18) solid phase extraction (SPE) and the predominately conjugated vitamin K metabolites hydrolysed with methanolic HCl. The resultant carboxylic acid aglycones were quantitatively methylated with diazomethane and fractionated by normal-phase (silica) SPE. Final analysis was by reversed-phase (C18) HPLC with a methanol-aqueous mobile phase. Metabolites were detected by amperometric, oxidative ECD of their quinol forms, which were generated by post-column coulometric reduction at an upstream electrode. The assay gave excellent linearity (r2 typically = 0.999) and high sensitivity with an on-column detection limit of <3.5 fmol (<1pg). The inter-assay precision was typically 10%. Metabolite recovery was compared to that of an internal standard (2-methyl-3-(7'-carboxy-heptyl)-1,4-naphthoquinone), added to urine samples just before analysis. Using this methodology we confirmed that the 5C- and 7C-metabolite were major catabolites of both phylloquinone (vitamin K1) and menaquinones (vitamin K2) in humans. We propose that the measurement of urinary vitamin K metabolite excretion is a candidate non-invasive marker of total vitamin K status

    Brave Forms of Mentoring Supported by Technology in Teacher Education

    Get PDF
    Indexación: Web of ScienceQuality education is undoubtedly a global concern, tied closely to preoccupations with economic and social development. Increasingly, the adoption and effective use of current technology tools are being recognized as visible signs of that quality. Scholars are providing increasing evidence of the kinds of empowered teacher identities that will adopt the effective use of technology tools in teaching. Less is being discussed about how technology can support the processes needed to mediate such identities. The context of Teacher Education is a strategic place to begin to initiate such processes. Our aim in this article is twofold: 1) to describe two recent examples of innovative, technology - supported mentoring processes that were conducted in the context of an EFL Teacher Education program in Chile; 2) to revisit the findings of these studies in light of new evidence from participants who have moved on in their careers. This evidence is viewed in the framework of recent scholarship on the responsibilities that Teacher Education plays in their development. The first 16-month study examined the influences of a guided reading program involving e-readers on the identities and literacy skills of pre-service teachers. The second was a student-conceived study. That inquiry sought to determine the influence of upper year students' peer mentoring, made available partly through a social media site (SMS), on the identities and investment in learning of 12 firs-year students in the pedagogy program. The initial evidence from ethnographic tools used in both studies indicated that the participants were struggling with confidence and doubting themselves as knowledgeable, effective future teachers - not predictive of a potential for quality teaching. Positive signs at the end of both studies and more recent reports from participants suggest that the mentoring had longitudinal benefits for some, although not uniformly. The potential of apprenticeship and mentoring in a technology-supported environment requires rethinking Teacher Education mandates if we are to empower emerging teachers to be quality teachers.http://www.ejel.org/issue/download.html?idArticle=48

    Quantitative Stability of Linear Infinite Inequality Systems under Block Perturbations with Applications to Convex Systems

    Get PDF
    The original motivation for this paper was to provide an efficient quantitative analysis of convex infinite (or semi-infinite) inequality systems whose decision variables run over general infinite-dimensional (resp. finite-dimensional) Banach spaces and that are indexed by an arbitrary fixed set JJ. Parameter perturbations on the right-hand side of the inequalities are required to be merely bounded, and thus the natural parameter space is l(J)l_{\infty}(J). Our basic strategy consists of linearizing the parameterized convex system via splitting convex inequalities into linear ones by using the Fenchel-Legendre conjugate. This approach yields that arbitrary bounded right-hand side perturbations of the convex system turn on constant-by-blocks perturbations in the linearized system. Based on advanced variational analysis, we derive a precise formula for computing the exact Lipschitzian bound of the feasible solution map of block-perturbed linear systems, which involves only the system's data, and then show that this exact bound agrees with the coderivative norm of the aforementioned mapping. In this way we extend to the convex setting the results of [3] developed for arbitrary perturbations with no block structure in the linear framework under the boundedness assumption on the system's coefficients. The latter boundedness assumption is removed in this paper when the decision space is reflexive. The last section provides the aimed application to the convex case

    Fast tuneable InGaAsP DBR laser using quantum-confined stark-effect-induced refractive index change

    Get PDF
    We report a monolithically integrated InGaAsP DBR ridge waveguide laser that uses the quantum-confined Stark effect (QCSE) to achieve fast tuning response. The laser incorporates three sections: a forward-biased gain section, a reverse-biased phase section, and a reverse-biased DBR tuning section. The laser behavior is modeled using transmission matrix equations and tuning over similar to 8 nm is predicted. Devices were fabricated using post-growth shallow ion implantation to reduce the loss in the phase and DBR sections by quantum well intermixing. The lasing wavelength was measured while varying the reverse bias of the phase and DBR sections in the range 0 V to < - 2.5 V. Timing was noncontinuous over a similar to 7-nm-wavelength range, with a side-mode suppression ratio of similar to 20 dB. Coupled cavity effects due to the fabrication method used introduced discontinuities in tuning. The frequency modulation (FM) response was measured to be uniform within 2 dB over the frequency range 10 MHz to 10 GHz, indicating that tuning times of 100 ps are possible
    corecore