1,313 research outputs found
Subordination Pathways to Fractional Diffusion
The uncoupled Continuous Time Random Walk (CTRW) in one space-dimension and
under power law regime is splitted into three distinct random walks: (rw_1), a
random walk along the line of natural time, happening in operational time;
(rw_2), a random walk along the line of space, happening in operational
time;(rw_3), the inversion of (rw_1), namely a random walk along the line of
operational time, happening in natural time. Via the general integral equation
of CTRW and appropriate rescaling, the transition to the diffusion limit is
carried out for each of these three random walks. Combining the limits of
(rw_1) and (rw_2) we get the method of parametric subordination for generating
particle paths, whereas combination of (rw_2) and (rw_3) yields the
subordination integral for the sojourn probability density in space-time
fractional diffusion.Comment: 20 pages, 4 figure
Spectral evolution of bright NS LMXBs
Theoretical and observational support suggests that the spectral evolution of
neutron-star LMXBs, including transient hard X-ray tails, may be explained by
the interplay between thermal and bulk motion Comptonization. In this
framework, we developed a new model for the X-ray spectral fitting XSPEC
package which takes into account the effects of both thermal and dynamical
(i.e. bulk) Comptonization, CompTB. Using data from the INTEGRAL satellite, we
tested our model on broad band spectra of a sample of persistently low magnetic
field bright neutron star Low Mass X-ray Binaries, covering different spectral
states. The case of the bright source GX 5-1 is presented here. Particular
attention is given to the transient powerlaw-like hard X-ray (above 30 keV)
tail that we interpret in the framework of the bulk motion Comptonization
process, qualitatively describing the physical conditions of the environment in
the innermost part of the system.Comment: 6 pages, 4 figures. Accepted for publication on PoS (contribution
PoS(extremesky2009)059), proceedings of "The Extreme sky: Sampling the
Universe above 10 keV", held in Otranto (Italy) in October 200
Uncoupled continuous-time random walks: Solution and limiting behavior of the master equation
A detailed study is presented for a large class of uncoupled continuous-time
random walks (CTRWs). The master equation is solved for the Mittag-Leffler
survival probability. The properly scaled diffusive limit of the master
equation is taken and its relation with the fractional diffusion equation is
discussed. Finally, some common objections found in the literature are
thoroughly reviewed.Comment: Preprint version of an already published paper. 8 page
Spatially fractional-order viscoelasticity, non-locality and a new kind of anisotropy
Spatial non-locality of space-fractional viscoelastic equations of motion is
studied. Relaxation effects are accounted for by replacing second-order time
derivatives by lower-order fractional derivatives and their generalizations. It
is shown that space-fractional equations of motion of an order strictly less
than 2 allow for a new kind anisotropy, associated with angular dependence of
non-local interactions between stress and strain at different material points.
Constitutive equations of such viscoelastic media are determined. Explicit
fundamental solutions of the Cauchy problem are constructed for some cases
isotropic and anisotropic non-locality
Continuous Quantification of Spectral Coherence Using QuadraticTime-Frequency Distributions: Error Analysis and Application
Understanding Anomalous Transport in Intermittent Maps: From Continuous Time Random Walks to Fractals
We show that the generalized diffusion coefficient of a subdiffusive
intermittent map is a fractal function of control parameters. A modified
continuous time random walk theory yields its coarse functional form and
correctly describes a dynamical phase transition from normal to anomalous
diffusion marked by strong suppression of diffusion. Similarly, the probability
density of moving particles is governed by a time-fractional diffusion equation
on coarse scales while exhibiting a specific fine structure. Approximations
beyond stochastic theory are derived from a generalized Taylor-Green-Kubo
formula.Comment: 4 pages, 3 eps figure
Levi-Civita cylinders with fractional angular deficit
The angular deficit factor in the Levi-Civita vacuum metric has been
parametrized using a Riemann-Liouville fractional integral. This introduces a
new parameter into the general relativistic cylinder description, the
fractional index {\alpha}. When the fractional index is continued into the
negative {\alpha} region, new behavior is found in the Gott-Hiscock cylinder
and in an Israel shell.Comment: 5 figure
Continuous-time statistics and generalized relaxation equations
Using two simple examples, the continuous-time random walk as well as a two state Markov chain, the relation between generalized anomalous relaxation equations and semi-Markov processes is illustrated. This relation is then used to discuss continuous-time random statistics in a general setting, for statistics of convolution-type. Two examples are presented in some detail: the sum statistic and the maximum statistic
Fractional Fokker-Planck Equation for Ultraslow Kinetics
Several classes of physical systems exhibit ultraslow diffusion for which the
mean squared displacement at long times grows as a power of the logarithm of
time ("strong anomaly") and share the interesting property that the probability
distribution of particle's position at long times is a double-sided
exponential. We show that such behaviors can be adequately described by a
distributed-order fractional Fokker-Planck equations with a power-law
weighting-function. We discuss the equations and the properties of their
solutions, and connect this description with a scheme based on continuous-time
random walks
Lebesgue regularity for differential difference equations with fractional damping
We provide necessary and sufficient conditions for the existence and unique-ness of solutions belonging to the vector-valued space of sequences �(Z, X) forequations that can be modeled in the formΔu(n)+Δu(n)=Au(n)+G(u)(n)+ (n), n ∈ Z,,>0,≥0,where X is a Banach space, ∈ �(Z, X), A is a closed linear operatorwith domain D(A) defined on X,andG is a nonlinear function. The oper-ator Δdenotes the fractional difference operator of order >0inthesense of Grünwald-Letnikov. Our class of models includes the discrete timeKlein-Gordon, telegraph, and Basset equations, among other differential differ-ence equations of interest. We prove a simple criterion that shows the existenceof solutions assuming that f is small and that G is a nonlinear term
- …
