1,313 research outputs found

    Subordination Pathways to Fractional Diffusion

    Full text link
    The uncoupled Continuous Time Random Walk (CTRW) in one space-dimension and under power law regime is splitted into three distinct random walks: (rw_1), a random walk along the line of natural time, happening in operational time; (rw_2), a random walk along the line of space, happening in operational time;(rw_3), the inversion of (rw_1), namely a random walk along the line of operational time, happening in natural time. Via the general integral equation of CTRW and appropriate rescaling, the transition to the diffusion limit is carried out for each of these three random walks. Combining the limits of (rw_1) and (rw_2) we get the method of parametric subordination for generating particle paths, whereas combination of (rw_2) and (rw_3) yields the subordination integral for the sojourn probability density in space-time fractional diffusion.Comment: 20 pages, 4 figure

    Spectral evolution of bright NS LMXBs

    Full text link
    Theoretical and observational support suggests that the spectral evolution of neutron-star LMXBs, including transient hard X-ray tails, may be explained by the interplay between thermal and bulk motion Comptonization. In this framework, we developed a new model for the X-ray spectral fitting XSPEC package which takes into account the effects of both thermal and dynamical (i.e. bulk) Comptonization, CompTB. Using data from the INTEGRAL satellite, we tested our model on broad band spectra of a sample of persistently low magnetic field bright neutron star Low Mass X-ray Binaries, covering different spectral states. The case of the bright source GX 5-1 is presented here. Particular attention is given to the transient powerlaw-like hard X-ray (above 30 keV) tail that we interpret in the framework of the bulk motion Comptonization process, qualitatively describing the physical conditions of the environment in the innermost part of the system.Comment: 6 pages, 4 figures. Accepted for publication on PoS (contribution PoS(extremesky2009)059), proceedings of "The Extreme sky: Sampling the Universe above 10 keV", held in Otranto (Italy) in October 200

    Spatially fractional-order viscoelasticity, non-locality and a new kind of anisotropy

    Full text link
    Spatial non-locality of space-fractional viscoelastic equations of motion is studied. Relaxation effects are accounted for by replacing second-order time derivatives by lower-order fractional derivatives and their generalizations. It is shown that space-fractional equations of motion of an order strictly less than 2 allow for a new kind anisotropy, associated with angular dependence of non-local interactions between stress and strain at different material points. Constitutive equations of such viscoelastic media are determined. Explicit fundamental solutions of the Cauchy problem are constructed for some cases isotropic and anisotropic non-locality

    Understanding Anomalous Transport in Intermittent Maps: From Continuous Time Random Walks to Fractals

    Full text link
    We show that the generalized diffusion coefficient of a subdiffusive intermittent map is a fractal function of control parameters. A modified continuous time random walk theory yields its coarse functional form and correctly describes a dynamical phase transition from normal to anomalous diffusion marked by strong suppression of diffusion. Similarly, the probability density of moving particles is governed by a time-fractional diffusion equation on coarse scales while exhibiting a specific fine structure. Approximations beyond stochastic theory are derived from a generalized Taylor-Green-Kubo formula.Comment: 4 pages, 3 eps figure

    Levi-Civita cylinders with fractional angular deficit

    Full text link
    The angular deficit factor in the Levi-Civita vacuum metric has been parametrized using a Riemann-Liouville fractional integral. This introduces a new parameter into the general relativistic cylinder description, the fractional index {\alpha}. When the fractional index is continued into the negative {\alpha} region, new behavior is found in the Gott-Hiscock cylinder and in an Israel shell.Comment: 5 figure

    Continuous-time statistics and generalized relaxation equations

    Get PDF
    Using two simple examples, the continuous-time random walk as well as a two state Markov chain, the relation between generalized anomalous relaxation equations and semi-Markov processes is illustrated. This relation is then used to discuss continuous-time random statistics in a general setting, for statistics of convolution-type. Two examples are presented in some detail: the sum statistic and the maximum statistic

    Fractional Fokker-Planck Equation for Ultraslow Kinetics

    Full text link
    Several classes of physical systems exhibit ultraslow diffusion for which the mean squared displacement at long times grows as a power of the logarithm of time ("strong anomaly") and share the interesting property that the probability distribution of particle's position at long times is a double-sided exponential. We show that such behaviors can be adequately described by a distributed-order fractional Fokker-Planck equations with a power-law weighting-function. We discuss the equations and the properties of their solutions, and connect this description with a scheme based on continuous-time random walks

    Lebesgue regularity for differential difference equations with fractional damping

    Get PDF
    We provide necessary and sufficient conditions for the existence and unique-ness of solutions belonging to the vector-valued space of sequences �(Z, X) forequations that can be modeled in the formΔu(n)+Δu(n)=Au(n)+G(u)(n)+ (n), n ∈ Z,,>0,≥0,where X is a Banach space, ∈ �(Z, X), A is a closed linear operatorwith domain D(A) defined on X,andG is a nonlinear function. The oper-ator Δdenotes the fractional difference operator of order >0inthesense of Grünwald-Letnikov. Our class of models includes the discrete timeKlein-Gordon, telegraph, and Basset equations, among other differential differ-ence equations of interest. We prove a simple criterion that shows the existenceof solutions assuming that f is small and that G is a nonlinear term
    corecore