26,525 research outputs found

    Asteroid 2014 OL339: yet another Earth quasi-satellite

    Full text link
    Our planet has one permanently bound satellite -the Moon-, a likely large number of mini-moons or transient irregular natural satellites, and three temporary natural retrograde satellites or quasi-satellites. These quasi-moons -(164207) 2004 GU9, (277810) 2006 FV35 and 2013 LX28- are unbound companions to the Earth. The orbital evolution of quasi-satellites may transform them into temporarily bound satellites of our planet. Here, we study the dynamical evolution of the recently discovered Aten asteroid 2014 OL339 to show that it is currently following a quasi-satellite orbit with respect to the Earth. This episode started at least about 775 yr ago and it will end 165 yr from now. The orbit of this object is quite chaotic and together with 164207 are the most unstable of the known Earth quasi-satellites. This group of minor bodies is, dynamically speaking, very heterogeneous but three of them exhibit Kozai-like dynamics: the argument of perihelion of 164207 oscillates around -90 degrees, the one of 277810 librates around 180 degrees and that of 2013 LX28 remains around 0 degrees. Asteroid 2014 OL339 is not currently engaged in any Kozai-like dynamics.Comment: 10 pages, 7 figures, 1 table. Revised to reflect final version published in MNRAS. arXiv admin note: text overlap with arXiv:1401.501

    The Chelyabinsk superbolide: a fragment of asteroid 2011 EO40?

    Full text link
    Bright fireballs or bolides are caused by meteoroids entering the Earth's atmosphere at high speed. On 2013 February 15, a superbolide was observed in the skies near Chelyabinsk, Russia. Such a meteor could be the result of the decay of an asteroid and here we explore this possibility applying a multistep approach. First, we use available data and Monte Carlo optimization (validated using 2008 TC3 as template) to obtain a robust solution for the pre-impact orbit of the Chelyabinsk impactor (semimajor axis = 1.62 au, eccentricity = 0.53, inclination = 3.82 deg, longitude of the ascending node = 326.41 deg and argument of perihelion = 109.44 deg). Then, we use this most probable orbit and numerical analysis to single out candidates for membership in, what we call, the Chelyabinsk asteroid family. Finally, we perform N-body simulations to either confirm or reject any dynamical connection between candidates and impactor. We find reliable statistical evidence on the existence of the Chelyabinsk cluster. It appears to include multiple small asteroids and two relatively large members: 2007 BD7 and 2011 EO40. The most probable parent body for the Chelyabinsk superbolide is 2011 EO40. The orbits of these objects are quite perturbed as they experience close encounters not only with the Earth-Moon system but also with Venus, Mars and Ceres. Under such conditions, the cluster cannot be older than about 20-40 kyr.Comment: 5 pages, 3 figures, 1 table, abstract abridged. Revised to reflect final version published in MNRAS: Letter
    corecore