19,778 research outputs found
Courts, Congress, and Public Policy, Part I: The FDA, the Courts, and the Regulation of Tobacco
H2S paper strip method - A bacteriological test for faecal coliforms in drinking water at various temperatures
Epidemics arising from waterborne diseases are a global health problem. Faecal contamination of drinking water is the main cause of these outbreaks. According to WHO (1996) for drinking water to be safe, a 100 ml sample should not contain any coliform bacteria. The standard methods currently used for routine testing have many limitations especially when applied in remote areas. The H2S method has been developed as an on-site, inexpensive and easy to use method to test drinking water for remote and rural areas. The present work analyses the reliability of the H2S method for detecting faecal contamination in drinking water. The minimum level of faecal coliforms that could be detected and the incubation period required at various levels of contamination were studied. The range of temperatures at which the method was effective and the incubation period required at various temperatures were also determined. The H2S method was found to be able to detect contamination down to a level of 1 CFU/100 ml of coliform bacteria. Although the H2S method could be used at a temperature range of 20 to 44oC, temperatures between 28 to 37oC gave faster results. An incubation period of only 24 hours was required at 37oC, which was found to be the most suitable incubation temperature. The incubation period increased with a decrease or increase in temperature
Cosmological horizon entropy and generalised second law for flat Friedmann Universe
We discuss the generalized second law (GSL) and the constraints imposed by it
for two types of Friedmann universes. The first one is the Friedmann universe
with radiation and a positive cosmological constant, and the second one
consists of non-relativistic matter and a positive cosmological constant. The
time evolution of the event horizon entropy and the entropy of the contents
within the horizon are analyses in an analytical way by obtaining the Hubble
parameter. It is shown that the GSL constraint the temperature of both the
radiation and matter of the Friedmann universe. It is also shown that, even
though the net entropy of the radiation (or matter) is decreasing at
sufficiently large times as the universe expand, it exhibit an increase during
the early times when universe is decelerating. That is the entropy of the
radiation within the comoving volume is decreasing only when the universe has
got an event horizon.Comment: 15 pages, 9 figure
- …
