800 research outputs found
Redistribution of phase fluctuations in a periodically driven cuprate superconductor
We study the thermally fluctuating state of a bi-layer cuprate superconductor
under the periodic action of a staggered field oscillating at optical
frequencies. This analysis distills essential elements of the recently
discovered phenomenon of light enhanced coherence in YBaCuO,
which was achieved by periodically driving infrared active apical oxygen
distortions. The effect of a staggered periodic perturbation is studied using a
Langevin and Fokker-Planck description of driven, coupled Josephson junctions,
which represent two neighboring pairs of layers and their two plasmons. In a
toy model including only two junctions, we demonstrate that the external
driving leads to a suppression of phase fluctuations of the low-energy plasmon,
an effect which is amplified via the resonance of the high energy plasmon. When
extending the modeling to the full layers, we find that this reduction becomes
far more pronounced, with a striking suppression of the low-energy
fluctuations, as visible in the power spectrum. We also find that this effect
acts onto the in-plane fluctuations, which are reduced on long length scales.
All these findings provide a physical framework to describe light control in
cuprates
Exotic Superconducting Phases of Ultracold Atom Mixtures on Triangular Lattices
We study the phase diagram of two-dimensional Bose-Fermi mixtures of
ultracold atoms on a triangular optical lattice, in the limit when the velocity
of bosonic condensate fluctuations is much larger than the Fermi velocity.
We contrast this work with our previous results for a square lattice system
in Phys. Rev. Lett. {\bf 97}, 030601 (2006).
Using functional renormalization group techniques we show that the phase
diagrams for a triangular lattice contain exotic superconducting phases. For
spin-1/2 fermions on an isotropic lattice we find a competition of -, -,
extended -, and -wave symmetry, as well as antiferromagnetic order. For
an anisotropic lattice, we further find an extended p-wave phase. A Bose-Fermi
mixture with spinless fermions on an isotropic lattice shows a competition
between - and -wave symmetry.
These phases can be traced back to the geometric shapes of the Fermi surfaces
in various regimes, as well as the intrinsic frustration of a triangular
lattice.Comment: 6 pages, 4 figures, extended version, slight modification
Detecting paired and counterflow superfluidity via dipole oscillations
We suggest an experimentally feasible procedure to observe paired and
counterflow superfluidity in ultra-cold atom systems. We study the time
evolution of one-dimensional mixtures of bosonic atoms in an optical lattice
following an abrupt displacement of an additional weak confining potential. We
find that the dynamic responses of the paired superfluid phase for attractive
inter-species interactions and the counterflow superfluid phase for repulsive
interactions are qualitatively distinct and reflect the quasi long-range order
that characterizes these states. These findings suggest a clear experimental
procedure to detect these phases, and give an intuitive insight into their
dynamics.Comment: 4 pages,5 figure
Intrinsic Photoconductivity of Ultracold Fermions in Optical Lattices
We report on the experimental observation of an analog to a persistent
alternating photocurrent in an ultracold gas of fermionic atoms in an optical
lattice. The dynamics is induced and sustained by an external harmonic
confinement. While particles in the excited band exhibit long-lived
oscillations with a momentum dependent frequency a strikingly different
behavior is observed for holes in the lowest band. An initial fast collapse is
followed by subsequent periodic revivals. Both observations are fully explained
by mapping the system onto a nonlinear pendulum.Comment: 5+7 pages, 4+4 figure
Bose-Fermi mixtures in 1D optical superlattices
The zero temperature phase diagram of binary boson-fermion mixtures in
two-colour superlattices is investigated. The eigenvalue problem associated
with the Bose-Fermi-Hubbard Hamiltonian is solved using an exact numerical
diagonalization technique, supplemented by an adaptive basis truncation scheme.
The physically motivated basis truncation allows to access larger systems in a
fully controlled and very flexible framework. Several experimentally relevant
observables, such as the matter-wave interference pattern and the
condensatefraction, are investigated in order to explore the rich phase
diagram. At symmetric half filling a phase similar to the Mott-insulating phase
in a commensurate purely bosonic system is identified and an analogy to recent
experiments is pointed out. Furthermore a phase of complete localization of the
bosonic species generated by the repulsive boson-fermion interaction is
identified. These localized condensates are of a different nature than the
genuine Bose-Einstein condensates in optical lattices.Comment: 18 pages, 9 figure
Mixing-Demixing transition in 1D boson-fermion mixture at low fermion densities
We numerically investigated the mixing-demixing transition of the
boson-fermion mixture on a 1D lattice at an incommensurate filling with the
fermion density being kept below the boson density. The phase diagram we
obtained suggested that the decrease of the number of the fermions drove the
system into the demixing phase
Review: ‘Gimme five’: future challenges in multiple sclerosis. ECTRIMS Lecture 2009
This article is based on the ECTRIMS lecture given at the 25th ECTRIMS meeting which was held in Düsseldorf, Germany, from 9 to 12 September 2009. Five challenges have been identified: (1) safeguarding the principles of medical ethics; (2) optimizing the risk/benefit ratio; (3) bridging the gap between multiple sclerosis and experimental autoimmune encephalitis; (4) promoting neuroprotection and repair; and (5) tailoring multiple sclerosis therapy to the individual patient. Each of these challenges will be discussed and placed in the context of current research into the pathogenesis and treatment of multiple sclerosis
Recanalization of total coronary occlusions using a laser guidewire (The European TOTAL Surveillance Study)
Recommended from our members
Prebiotic effects: metabolic and health benefits
The different compartments of the gastrointestinal tract are inhabited by populations of micro-organisms. By far the most important predominant populations are in the colon where a true symbiosis with the host exists that is a key for well-being and health. For such a microbiota, 'normobiosis' characterises a composition of the gut 'ecosystem' in which micro-organisms with potential health benefits predominate in number over potentially harmful ones, in contrast to 'dysbiosis', in which one or a few potentially harmful micro-organisms are dominant, thus creating a disease-prone situation. The present document has been written by a group of both academic and industry experts (in the ILSI Europe Prebiotic Expert Group and Prebiotic Task Force, respectively). It does not aim to propose a new definition of a prebiotic nor to identify which food products are classified as prebiotic but rather to validate and expand the original idea of the prebiotic concept (that can be translated in 'prebiotic effects'), defined as: 'The selective stimulation of growth and/or activity(ies) of one or a limited number of microbial genus(era)/species in the gut microbiota that confer(s) health benefits to the host.' Thanks to the methodological and fundamental research of microbiologists, immense progress has very recently been made in our understanding of the gut microbiota. A large number of human intervention studies have been performed that have demonstrated that dietary consumption of certain food products can result in statistically significant changes in the composition of the gut microbiota in line with the prebiotic concept. Thus the prebiotic effect is now a well-established scientific fact. The more data are accumulating, the more it will be recognised that such changes in the microbiota's composition, especially increase in bifidobacteria, can be regarded as a marker of intestinal health. The review is divided in chapters that cover the major areas of nutrition research where a prebiotic effect has tentatively been investigated for potential health benefits. The prebiotic effect has been shown to associate with modulation of biomarkers and activity(ies) of the immune system. Confirming the studies in adults, it has been demonstrated that, in infant nutrition, the prebiotic effect includes a significant change of gut microbiota composition, especially an increase of faecal concentrations of bifidobacteria. This concomitantly improves stool quality (pH, SCFA, frequency and consistency), reduces the risk of gastroenteritis and infections, improves general well-being and reduces the incidence of allergic symptoms such as atopic eczema. Changes in the gut microbiota composition are classically considered as one of the many factors involved in the pathogenesis of either inflammatory bowel disease or irritable bowel syndrome. The use of particular food products with a prebiotic effect has thus been tested in clinical trials with the objective to improve the clinical activity and well-being of patients with such disorders. Promising beneficial effects have been demonstrated in some preliminary studies, including changes in gut microbiota composition (especially increase in bifidobacteria concentration). Often associated with toxic load and/or miscellaneous risk factors, colon cancer is another pathology for which a possible role of gut microbiota composition has been hypothesised. Numerous experimental studies have reported reduction in incidence of tumours and cancers after feeding specific food products with a prebiotic effect. Some of these studies (including one human trial) have also reported that, in such conditions, gut microbiota composition was modified (especially due to increased concentration of bifidobacteria). Dietary intake of particular food products with a prebiotic effect has been shown, especially in adolescents, but also tentatively in postmenopausal women, to increase Ca absorption as well as bone Ca accretion and bone mineral density. Recent data, both from experimental models and from human studies, support the beneficial effects of particular food products with prebiotic properties on energy homaeostasis, satiety regulation and body weight gain. Together, with data in obese animals and patients, these studies support the hypothesis that gut microbiota composition (especially the number of bifidobacteria) may contribute to modulate metabolic processes associated with syndrome X, especially obesity and diabetes type 2. It is plausible, even though not exclusive, that these effects are linked to the microbiota-induced changes and it is feasible to conclude that their mechanisms fit into the prebiotic effect. However, the role of such changes in these health benefits remains to be definitively proven. As a result of the research activity that followed the publication of the prebiotic concept 15 years ago, it has become clear that products that cause a selective modification in the gut microbiota's composition and/or activity(ies) and thus strengthens normobiosis could either induce beneficial physiological effects in the colon and also in extra-intestinal compartments or contribute towards reducing the risk of dysbiosis and associated intestinal and systemic pathologies
- …
