1,260 research outputs found

    Novel magnetic properties of graphene: Presence of both ferromagnetic and antiferromagnetic features and other aspects

    Full text link
    Investigations of the magnetic properties of graphenes prepared by different methods reveal that dominant ferromagnetic interactions coexist along with antiferromagnetic interactions in all the samples. Thus, all the graphene samples exhibit room-temperature magnetic hysteresis. The magnetic properties depend on the number of layers and the sample area, small values of both favoring larger magnetization. Molecular charge-transfer affects the magnetic properties of graphene, interaction with a donor molecule such as tetrathiafulvalene having greater effect than an electron-withdrawing molecule such as tetracyanoethyleneComment: 16 pges, 5 figure

    Quenching of fluorescence of aromatic molecules by graphene due to electron transfer

    Full text link
    Investigations on the fluorescence quenching of graphene have been carried out with two organic donor molecules, pyrene butanaoic acid succinimidyl ester (PyBS, I) and oligo(p-phenylenevinylene) methyl ester (OPV-ester, II). Absorption and photoluminescence spectra of I and II recorded in mixture with increasing the concentrations of graphene showed no change in the former, but remarkable quenching of fluorescence. The property of graphene to quench fluorescence of these aromatic molecules is shown to be associated with photo-induced electron transfer, on the basis of fluorescence decay and time-resolved transient absorption spectroscopic measurements.Comment: 18 pages, 6 figure

    Electric and magnetic Weyl tensors in higher dimensions

    Full text link
    Recent results on purely electric (PE) or magnetic (PM) spacetimes in n dimensions are summarized. These include: Weyl types; diagonalizability; conditions under which direct (or warped) products are PE/PM.Comment: 4 pages; short summary of (parts of) arXiv:1203.3563. Proceedings of "Relativity and Gravitation - 100 Years after Einstein in Prague", Prague, June 25-29, 2012 (http://ae100prg.mff.cuni.cz/

    Complete classification of purely magnetic, non-rotating and non-accelerating perfect fluids

    Full text link
    Recently the class of purely magnetic non-rotating dust spacetimes has been shown to be empty (Wylleman, Class. Quant. Grav. 23, 2727). It turns out that purely magnetic rotating dust models are subject to severe integrability conditions as well. One of the consequences of the present paper is that also rotating dust cannot be purely magnetic when it is of Petrov type D or when it has a vanishing spatial gradient of the energy density. For purely magnetic and non-rotating perfect fluids on the other hand, which have been fully classified earlier for Petrov type D (Lozanovski, Class. Quant. Grav. 19, 6377), the fluid is shown to be non-accelerating if and only if the spatial density gradient vanishes. Under these conditions, a new and algebraically general solution is found, which is unique up to a constant rescaling, which is spatially homogeneous of Bianchi type VI0VI_0, has degenerate shear and is of Petrov type I(M)M^\infty) in the extended Arianrhod-McIntosh classification. The metric and the equation of state are explicitly constructed and properties of the model are briefly discussed. We finally situate it within the class of normal geodesic flows with degenerate shear tensor.Comment: 12 pages; introduction partly rewritten, notation made more clear, table of results adde

    Weak Gravitational Field in Finsler-Randers Space and Raychaudhuri Equation

    Full text link
    The linearized form of the metric of a Finsler - Randers space is studied in relation to the equations of motion, the deviation of geodesics and the generalized Raychaudhuri equation are given for a weak gravitational field. This equation is also derived in the framework of a tangent bundle. By using Cartan or Berwald-like connections we get some types "gravito - electromagnetic" curvature. In addition we investigate the conditions under which a definite Lagrangian in a Randers space leads to Einstein field equations under the presence of electromagnetic field. Finally, some applications of the weak field in a generalized Finsler spacetime for gravitational waves are given.Comment: 22 pages, matches version published in GER

    Theorems on shear-free perfect fluids with their Newtonian analogues

    Full text link
    In this paper we provide fully covariant proofs of some theorems on shear-free perfect fluids. In particular, we explicitly show that any shear-free perfect fluid with the acceleration proportional to the vorticity vector (including the simpler case of vanishing acceleration) must be either non-expanding or non-rotating. We also show that these results are not necessarily true in the Newtonian case, and present an explicit comparison of shear-free dust in Newtonian and relativistic theories in order to see where and why the differences appear.Comment: 23 pages, LaTeX. Submitted to GR

    Gravito-electromagnetism

    Full text link
    We develop and apply a fully covariant 1+3 electromagnetic analogy for gravity. The free gravitational field is covariantly characterized by the Weyl gravito-electric and gravito-magnetic spatial tensor fields, whose dynamical equations are the Bianchi identities. Using a covariant generalization of spatial vector algebra and calculus to spatial tensor fields, we exhibit the covariant analogy between the tensor Bianchi equations and the vector Maxwell equations. We identify gravitational source terms, couplings and potentials with and without electromagnetic analogues. The nonlinear vacuum Bianchi equations are shown to be invariant under covariant spatial duality rotation of the gravito-electric and gravito-magnetic tensor fields. We construct the super-energy density and super-Poynting vector of the gravitational field as natural U(1) group invariants, and derive their super-energy conservation equation. A covariant approach to gravito-electric/magnetic monopoles is also presented.Comment: 14 pages. Version to appear in Class. Quant. Gra
    corecore