2,385 research outputs found

    The Chemical Evolution of the Galaxy: the two-infall model

    Get PDF
    In this paper we present a new chemical evolution model for the Galaxy which assumes two main infall episodes for the formation of halo-thick disk and thin disk, respectively. We do not try to take into account explicitly the evolution of the halo but we implicitly assume that the timescale for the formation of the halo was of the same order as the timescale for the formation of the thick disk. The formation of the thin-disk is much longer than that of the thick disk, implying that the infalling gas forming the thin-disk comes not only from the thick disk but mainly from the intergalactic medium. The timescale for the formation of the thin-disk is assumed to be a function of the galactocentric distance, leading to an inside-out picture for the Galaxy building. The model takes into account the most up to date nucleosynthesis prescriptions and adopts a threshold in the star formation process which naturally produces a hiatus in the star formation rate at the end of the thick disk phase, as suggested by recent observations. The model results are compared with an extended set of observational constraints. Among these constraints, the tightest one is the metallicity distribution of the G-dwarf stars for which new data are now available. Our model fits very well these new data. We show that in order to reproduce most of these constraints a timescale 1\le 1 Gyr for the (halo)-thick-disk and of 8 Gyr for the thin-disk formation in the solar vicinity are required. We predict that the radial abundance gradients in the inner regions of the disk (R<RR< R_{\odot}) are steeper than in the outer regions, a result confirmed by recent abundance determinations, and that the inner ones steepen in time during the Galactic lifetime.Comment: 48 pages, 20 Postscript figures, AASTex v.4.0, to be published in Astrophysical Journa

    The chemical evolution of Barium and Europium in the Milky Way

    Full text link
    We compute the evolution of the abundances of barium and europium in the Milky Way and we compare our results with the observed abundances from the recent UVES Large Program "First Stars". We use a chemical evolution model which already reproduces the majority of observational constraints. We confirm that barium is a neutron capture element mainly produced in the low mass AGB stars during the thermal-pulsing phase by the 13C neutron source, in a slow neutron capture process. However, in order to reproduce the [Ba/Fe] vs. [Fe/H] as well as the Ba solar abundance, we suggest that Ba should be also produced as an r-process element by massive stars in the range 10-30 solar masses. On the other hand, europium should be only an r-process element produced in the same range of masses (10-30 solar masses), at variance with previous suggestions indicating a smaller mass range for the Eu producers. As it is well known, there is a large spread in the [Ba/Fe] and [Eu/Fe] ratios at low metallicities, although smaller in the newest data. With our model we estimate for both elements (Ba and Eu) the ranges for the r-process yields from massive stars which better reproduce the trend of the data. We find that with the same yields which are able to explain the observed trends, the large spread in the [Ba/Fe] and [Eu/Fe] ratios cannot be explained even in the context of an inhomogeneous models for the chemical evolution of our Galaxy. We therefore derive the amount by which the yields should be modified to fully account for the observed spread. We then discuss several possibilities to explain the size of the spread. We finally suggest that the production ratio of [Ba/Eu] could be almost constant in the massive stars.Comment: 14 pages, 17 figures, accepted for pubblication in A&

    Colour gradients of high-redshift Early-Type Galaxies from hydrodynamical monolithic models

    Full text link
    We analyze the evolution of colour gradients predicted by the hydrodynamical models of early type galaxies (ETGs) in Pipino et al. (2008), which reproduce fairly well the chemical abundance pattern and the metallicity gradients of local ETGs. We convert the star formation (SF) and metal content into colours by means of stellar population synthetic model and investigate the role of different physical ingredients, as the initial gas distribution and content, and eps_SF, i.e. the normalization of SF rate. From the comparison with high redshift data, a full agreement with optical rest-frame observations at z < 1 is found, for models with low eps_SF, whereas some discrepancies emerge at 1 < z < 2, despite our models reproduce quite well the data scatter at these redshifts. To reconcile the prediction of these high eps_SF systems with the shallower colour gradients observed at lower z we suggest intervention of 1-2 dry mergers. We suggest that future studies should explore the impact of wet galaxy mergings, interactions with environment, dust content and a variation of the Initial Mass Function from the galactic centers to the peripheries.Comment: 13 pages, 7 figures, 1 table, accepted for publication on MNRA

    On Dwarf Galaxies as the Source of Intracluster Gas

    Get PDF
    Recent observational evidence for steep dwarf galaxy luminosity functions in several rich clusters has led to speculation that their precursors may be the source of the majority of gas and metals inferred from intracluster medium (ICM) x-ray observations. Their deposition into the ICM is presumed to occur through early supernovae-driven winds, the resultant systems reflecting the photometric and chemical properties of the low luminosity dwarf spheroidals and ellipticals we observe locally. We consider this scenario, utilising a self-consistent model for spheroidal photo-chemical evolution and gas ejection via galactic superwinds. Insisting that post-wind dwarfs obey the observed colour-luminosity-metallicity relations, we conclude that the bulk of the ICM gas and metals does not originate within their precursors.Comment: 43 pages, 8 figures, LaTeX, also available at http://msowww.anu.edu.au/~gibson/publications.html, to appear in ApJ, Vol 473, 1997, in pres

    The impact of stellar rotation on the CNO abundance patterns in the Milky Way at low metallicities

    Get PDF
    We investigate the effect of new stellar models, which take rotation into account, computed for very low metallicities on the chemical evolution of the earliest phases of the Milky Way. We check the impact of these new stellar yields on a model for the halo of the Milky Way that can reproduce the observed halo metallicity distribution. In this way we try to better constrain the ISM enrichment timescale, which was not done in our previous work. The stellar models adopted in this work were computed under the assumption that the ratio of the initial rotation velocity to the critical velocity of stars is roughly constant with metallicity. This naturally leads to faster rotation at lower metallicity, as metal poor stars are more compact than metal rich ones. We find that the new Z = 10-8 stellar yields computed for large rotational velocities have a tremendous impact on the interstellar medium nitrogen enrichment for log(O/H)+12 < 7 (or [Fe/H]< -3). We show that upon the inclusion of the new stellar calculations in a chemical evolution model for the galactic halo with infall and outflow, both high N/O and C/O ratios are obtained in the very-metal poor metallicity range in agreement with observations. Our results give further support to the idea that stars at very low metallicities could have initial rotational velocities of the order of 600-800kms-1. An important contribution to N from AGB stars is still needed in order to explain the observations at intermediate metallicities. One possibility is that AGB stars at very low metallicities also rotate fast. This could be tested in the future, once stellar evolution models for fast rotating AGB stars will be available.Comment: Contribution to Nuclei in the Cosmos IX (Proceedings of Science - 9 pages, 4 figs., accepted) - Version 2: one reference added in the caption of Fig.

    Loss of star forming gas in SDSS galaxies

    Full text link
    Using the star formation rates from the SDSS galaxy sample, extracted using the MOPED algorithm, and the empirical Kennicutt law relating star formation rate to gas density, we calculate the time evolution of the gas fraction as a function of the present stellar mass. We show how the gas-to-stars ratio varies with stellar mass, finding good agreement with previous results for smaller samples at the present epoch. For the first time we show clear evidence for progressive gas loss with cosmic epoch, especially in low-mass systems. We find that galaxies with small stellar masses have lost almost all of their cold baryons over time, whereas the most massive galaxies have lost little. Our results also show that the most massive galaxies have evolved faster and turned most of their gas into stars at an early time, thus strongly supporting a downsizing scenario for galaxy evolution.Comment: 29 pages, 9 figures, ApJ, accepte

    The dust content of QSO hosts at high redshift

    Full text link
    Infrared observations of high-z quasar (QSO) hosts indicate the presence of large masses of dust in the early universe. When combined with other observables, such as neutral gas masses and star formation rates, the dust content of z~6 QSO hosts may help constraining their star formation history. We have collected a database of 58 sources from the literature discovered by various surveys and observed in the FIR. We have interpreted the available data by means of chemical evolution models for forming proto-spheroids, investigating the role of the major parameters regulating star formation and dust production. For a few systems, given the derived small dynamical masses, the observed dust content can be explained only assuming a top-heavy initial mass function, an enhanced star formation efficiency and an increased rate of dust accretion. However, the possibility that, for some systems, the dynamical mass has been underestimated cannot be excluded. If this were the case, the dust mass can be accounted for by standard model assumptions. We provide predictions regarding the abundance of the descendants of QSO hosts; albeit rare, such systems should be present and detectable by future deep surveys such as Euclid already at z>4.Comment: 22 pages, 8 figures, MNRAS, accepte

    The Earliest Phases of Galaxy Evolution

    Get PDF
    In this paper we study the very early phases of the evolution of our Galaxy by means of a chemical evolution model which reproduces most of the observational constraints in the solar vicinity and in the disk. We have restricted our analysis to the solar neighborhood and present the predicted abundances of several elements (C, N, O, Mg, Si, S, Ca, Fe) over an extended range of metallicities [Fe/H]=4.0[Fe/H] = -4.0 to [Fe/H]=0.0[Fe/H] = 0.0 compared to previous models. We adopted the most recent yield calculations for massive stars taken from different authors (Woosley & Weaver 1995 and Thielemann et al. 1996) and compared the results with a very large sample of data, one of the largest ever used to this purpose. These data have been analysed with a new and powerful statistical method which allows us to quantify the observational spread in measured elemental abundances and obtain a more meaningful comparison with the predictions from our chemical evolution model. Our analysis shows that the ``plateau'' observed for the [α\alpha/Fe] ratios at low metallicities (3.0<[Fe/H]<1.0-3.0< [Fe/H] <-1.0) is not perfectly constant but it shows a slope, especially for oxygen. This slope is very well reproduced by our model with both sets of yields. This is not surprising since realistic chemical evolution models, taking into account in detail stellar lifetimes, never predicted a completely flat plateau. This is due either to the fact that massive stars of different mass produce a slightly different O/Fe ratio or to the often forgotten fact that supernovae of type Ia, originating from white dwarfs, start appearing already at a galactic age of 30 million years and reach their maximum at 1 Gyr.Comment: 32 pages, 9 figures, to be published in Ap

    A Chandra View of the Normal SO Galaxy NGC 1332: II: Solar Abundances in the Hot Gas and Implications for SN Enrichment

    Full text link
    We present spectral analysis of the diffuse emission in the normal, isolated, moderate-Lx S0 NGC 1332, constraining both the temperature profile and the metal abundances in the ISM. The characteristics of the point source population and the gravitating matter are discussed in two companion papers. The diffuse emission comprises hot gas, with an ~isothermal temperature profile (~0.5 keV), and emission from unresolved point-sources. In contrast with the cool cores of many groups and clusters, we find a small central temperature peak. We obtain emission-weighted abundance contraints within 20 kpc for several key elements: Fe, O, Ne, Mg and Si. The measured iron abundance (Z_Fe=1.1 in solar units; >0.53 at 99% confidence) strongly excludes the very sub-solar values often historically reported for early-type galaxies but agrees with recent observations of brighter galaxies and groups. The abundance ratios, with respect to Fe, of the other elements were also found to be ~solar, although Z_o/Z_Fe was significantly lower (<0.4). Such a low O abundance is not predicted by simple models of ISM enrichment by Type Ia and Type II supernovae, and may indicate a significant contribution from primordial hypernovae. Revisiting Chandra observations of the moderate-Lx, isolated elliptical NGC 720, we obtain similar abundance constraints. Adopting standard SNIa and SNII metal yields, our abundance ratio constraints imply 73+/-5% and 85+/-6% of the Fe enrichment in NGC 1332 and NGC 720, respectively, arises from SNIa. Although these results are sensitive to the considerable systematic uncertainty in the SNe yields, they are in good agreement with observations of more massive systems. These two moderate-Lx early-type galaxies reveal a consistent pattern of metal enrichment from cluster scales to moderate Lx/Lb galaxies. (abridged)Comment: 12 pages, 4 figures, accepted for publication in ApJ. Minor changes to match published versio
    corecore