1,105 research outputs found
Synaptic plasticity in medial vestibular nucleus neurons: comparison with computational requirements of VOR adaptation
Background: Vestibulo-ocular reflex (VOR) gain adaptation, a longstanding experimental model of cerebellar learning, utilizes sites of plasticity in both cerebellar cortex and brainstem. However, the mechanisms by which the activity of cortical Purkinje cells may guide synaptic plasticity in brainstem vestibular neurons are unclear. Theoretical analyses indicate that vestibular plasticity should depend upon the correlation between Purkinje cell and vestibular afferent inputs, so that, in gain-down learning for example, increased cortical activity should induce long-term depression (LTD) at vestibular synapses.
Methodology/Principal Findings: Here we expressed this correlational learning rule in its simplest form, as an anti-Hebbian, heterosynaptic spike-timing dependent plasticity interaction between excitatory (vestibular) and inhibitory (floccular) inputs converging on medial vestibular nucleus (MVN) neurons (input-spike-timing dependent plasticity, iSTDP). To test this rule, we stimulated vestibular afferents to evoke EPSCs in rat MVN neurons in vitro. Control EPSC recordings were followed by an induction protocol where membrane hyperpolarizing pulses, mimicking IPSPs evoked by flocculus inputs, were paired with single vestibular nerve stimuli. A robust LTD developed at vestibular synapses when the afferent EPSPs coincided with membrane hyperpolarisation, while EPSPs occurring before or after the simulated IPSPs induced no lasting change. Furthermore, the iSTDP rule also successfully predicted the effects of a complex protocol using EPSP trains designed to mimic classical conditioning.
Conclusions: These results, in strong support of theoretical predictions, suggest that the cerebellum alters the strength of vestibular synapses on MVN neurons through hetero-synaptic, anti-Hebbian iSTDP. Since the iSTDP rule does not depend on post-synaptic firing, it suggests a possible mechanism for VOR adaptation without compromising gaze-holding and VOR performance in vivo
Hiding Symbols and Functions: New Metrics and Constructions for Information-Theoretic Security
We present information-theoretic definitions and results for analyzing
symmetric-key encryption schemes beyond the perfect secrecy regime, i.e. when
perfect secrecy is not attained. We adopt two lines of analysis, one based on
lossless source coding, and another akin to rate-distortion theory. We start by
presenting a new information-theoretic metric for security, called symbol
secrecy, and derive associated fundamental bounds. We then introduce
list-source codes (LSCs), which are a general framework for mapping a key
length (entropy) to a list size that an eavesdropper has to resolve in order to
recover a secret message. We provide explicit constructions of LSCs, and
demonstrate that, when the source is uniformly distributed, the highest level
of symbol secrecy for a fixed key length can be achieved through a construction
based on minimum-distance separable (MDS) codes. Using an analysis related to
rate-distortion theory, we then show how symbol secrecy can be used to
determine the probability that an eavesdropper correctly reconstructs functions
of the original plaintext. We illustrate how these bounds can be applied to
characterize security properties of symmetric-key encryption schemes, and, in
particular, extend security claims based on symbol secrecy to a functional
setting.Comment: Submitted to IEEE Transactions on Information Theor
The depletion of ZDDP additives within marine lubricants and associated cylinder liner wear in RNLI lifeboat engines
Previous work of authors indicated the wear of cylinder liners in marine engines of RNLI lifeboats due to the intense lubricant degradation identified by inductively coupled plasma and Fourier Transform Infrared spectroscopy techniques. In this paper, further analysis carried out to evaluate the effects of lubricant degradation on the actual cylinder liners installed in the Trent Class Lifeboat engines is presented. Surface characterisation of actual cylinder liner’s bore surface showed maximum wear near the top dead centre region compared to rest of the piston stroke. Wear in this region of the cylinder liner surface is controlled primarily by the protective film forming anti-wear additives in the lubricant which limit the direct surface contact between the piston rings and cylinder liner. The condition of zinc dialkyldithiophosphates anti-wear additives was analysed using the nuclear magnetic resonance spectroscopy. Tribology analysis was conducted to evaluate the tribological and boundary film forming performance of zinc dialkyldithiophosphates additives by simulating cylinder liner–piston ring contact near the top dead centre. To further understand the wear mechanisms of the cylinder liner, wear debris analysis (Analytical Ferrography) of lubricant samples was performed. Results revealed the depletion of phosphorus containing zinc dialkyldithiophosphates anti-wear additives as a function of the lubricant’s duty cycle within the marine engines and its effect on the tribological and boundary film forming performance of lubricants. Wear debris analysis showed the generation of ferrous debris potentially from the cylinder liners as a result of reduced anti-wear protection from the depleted zinc dialkyldithiophosphates additives during the tribological contact with piston rings and piston skirt region. These findings are useful to understand the lubricant degradation mechanisms which affect the functionality of cylinder liners, therefore allowing to plan the engine maintenance strategies
Bounds on inference
Lower bounds for the average probability of error of estimating a hidden
variable X given an observation of a correlated random variable Y, and Fano's
inequality in particular, play a central role in information theory. In this
paper, we present a lower bound for the average estimation error based on the
marginal distribution of X and the principal inertias of the joint distribution
matrix of X and Y. Furthermore, we discuss an information measure based on the
sum of the largest principal inertias, called k-correlation, which generalizes
maximal correlation. We show that k-correlation satisfies the Data Processing
Inequality and is convex in the conditional distribution of Y given X. Finally,
we investigate how to answer a fundamental question in inference and privacy:
given an observation Y, can we estimate a function f(X) of the hidden random
variable X with an average error below a certain threshold? We provide a
general method for answering this question using an approach based on
rate-distortion theory.Comment: Allerton 2013 with extended proof, 10 page
Abscisic Acid Signaling and Abiotic Stress Tolerance in Plants: A Review on Current Knowledge and Future Prospects
- …
