94 research outputs found
Terminal Pleistocene Alaskan genome reveals first founding population of Native Americans
Despite broad agreement that the Americas were initially populated via Beringia, the land bridge that connected far northeast Asia with northwestern North America during the Pleistocene epoch, when and how the peopling of the Americas occurred remains unresolved. Analyses of human remains from Late Pleistocene Alaska are important to resolving the timing and dispersal of these populations. The remains of two infants were recovered at Upward Sun River (USR), and have been dated to around 11.5 thousand years ago (ka). Here, by sequencing the USR1 genome to an average coverage of approximately 17 times, we show that USR1 is most closely related to Native Americans, but falls basal to all previously sequenced contemporary and ancient Native Americans. As such, USR1 represents a distinct Ancient Beringian population. Using demographic modelling, we infer that the Ancient Beringian population and ancestors of other Native Americans descended from a single founding population that initially split from East Asians around 36 ± 1.5 ka, with gene flow persisting until around 25 ± 1.1 ka. Gene flow from ancient north Eurasians into all Native Americans took place 25–20 ka, with Ancient Beringians branching off around 22–18.1 ka. Our findings support a long-term genetic structure in ancestral Native Americans, consistent with the Beringian ‘standstill model’. We show that the basal northern and southern Native American branches, to which all other Native Americans belong, diverged around 17.5–14.6 ka, and that this probably occurred south of the North American ice sheets. We also show that after 11.5 ka, some of the northern Native American populations received gene flow from a Siberian population most closely related to Koryaks, but not Palaeo-Eskimos, Inuits or Kets, and that Native American gene flow into Inuits was through northern and not southern Native American groups. Our findings further suggest that the far-northern North American presence of northern Native Americans is from a back migration that replaced or absorbed the initial founding population of Ancient Beringians
Picuris Pueblo oral history and genomics reveal continuity in US Southwest
Indigenous groups often encounter significant challenges when asserting ancestral claims and cultural affiliations based on oral histories, particularly in the USA where such narratives have historically been undervalued. Although ancient DNA offers a tool to complement traditional knowledge and address gaps in oral history, longstanding disregard for Indigenous sovereignty and beliefs has understandably led many Indigenous communities to distrust DNA studies1-4. Earlier research often focused on repatriation claims5-7, whereas more recent work has increasingly moved towards enhancing Tribal histories8,9. Here we present a collaborative study initiated by a federally recognized Native American tribe, the sovereign nation of Picuris Pueblo in the Northern Rio Grande region of New Mexico, USA, to address gaps in traditional knowledge and further their understanding of their population history and ancestry. We generated genomes from 16 ancient Picuris individuals and 13 present-day members of Picuris Pueblo, providing genomic data spanning the last millennium. We show genetic continuity between ancient and present-day Picuris, and more broadly with Ancestral Puebloans from Pueblo Bonito in Chaco Canyon10, 275 km to the west. This suggests a firm spatiotemporal link among these Puebloan populations of the North American Southwest. Furthermore, we see no evidence of population decline before European arrival11-13, and no Athabascan ancestry in individuals predating 1500 CE, challenging earlier migration hypotheses14-16. This work prioritizes Indigenous control of genetic data and brings together oral tradition, archaeology, ethnography and genetics
Detection of sexually transmitted infection and human papillomavirus in negative cytology by multiplex-PCR
<p>Abstract</p> <p>Background</p> <p>The aim of this study was to determine the prevalence of human papillomavirus (HPV) and 15 species that cause sexually transmitted infections (STIs) in negative cytology. In addition, we compared the diagnostic performance of multiplex polymerase chain reaction (PCR) with widely available techniques used to detect HPV.</p> <p>Methods</p> <p>We recruited 235 women of reproductive age who had negative cytology findings in a liquid-based cervical smear. STIs were identified by multiplex PCR, and HPV genotypes by multiplex PCR, hybrid capture 2, and DNA microaray; discordant results were analyzed by direct sequencing.</p> <p>Results</p> <p>Approximately 96.6% of patients with negative cytology results were positive for pathogens that cause STIs. The pathogens most frequently detected were <it>Gardnerella vaginalis, Ureaplasma urealyticum</it>. The incidence of HPV in negative cytology was 23.3%. Low-risk HPV infection was significantly correlated with <it>Chalmaydia trachomatis</it>, and high-risk HPV infection was significantly correlated with <it>Group β streptococcus</it>. The analytical sensitivities of the multiplex PCR and DNA microarray were higher than 80%, and the analytical specificity was nearly 100% for all tests.</p> <p>Conclusions</p> <p>Multiplex PCR yielded results that most of patients with negative cytology were positive for pathogens that cause STIs, and were more similar to that of DNA microarray, than that of hybrid capture 2 in terms of analytical sensitivity and prediction value of HPV infection.</p
Native American gene flow into Polynesia predating Easter Island settlement.
The possibility of voyaging contact between prehistoric Polynesian and Native American populations has long intrigued researchers. Proponents have pointed to the existence of New World crops, such as the sweet potato and bottle gourd, in the Polynesian archaeological record, but nowhere else outside the pre-Columbian Americas1-6, while critics have argued that these botanical dispersals need not have been human mediated7. The Norwegian explorer Thor Heyerdahl controversially suggested that prehistoric South American populations had an important role in the settlement of east Polynesia and particularly of Easter Island (Rapa Nui)2. Several limited molecular genetic studies have reached opposing conclusions, and the possibility continues to be as hotly contested today as it was when first suggested8-12. Here we analyse genome-wide variation in individuals from islands across Polynesia for signs of Native American admixture, analysing 807 individuals from 17 island populations and 15 Pacific coast Native American groups. We find conclusive evidence for prehistoric contact of Polynesian individuals with Native American individuals (around AD 1200) contemporaneous with the settlement of remote Oceania13-15. Our analyses suggest strongly that a single contact event occurred in eastern Polynesia, before the settlement of Rapa Nui, between Polynesian individuals and a Native American group most closely related to the indigenous inhabitants of present-day Colombia
Early Pleistocene enamel proteome from Dmanisi resolves Stephanorhinus phylogeny
The sequencing of ancient DNA has enabled the reconstruction of speciation, migration and admixture events for extinct taxa. However, the irreversible post-mortem degradation2 of ancient DNA has so far limited its recovery—outside permafrost areas—to specimens that are not older than approximately 0.5 million years (Myr). By contrast, tandem mass spectrometry has enabled the sequencing of approximately 1.5-Myr-old collagen type I, and suggested the presence of protein residues in fossils of the Cretaceous period—although with limited phylogenetic use. In the absence of molecular evidence, the speciation of several extinct species of the Early and Middle Pleistocene epoch remains contentious. Here we address the phylogenetic relationships of the Eurasian Rhinocerotidae of the Pleistocene epoch, using the proteome of dental enamel from a Stephanorhinus tooth that is approximately 1.77-Myr old, recovered from the archaeological site of Dmanisi (South Caucasus, Georgia). Molecular phylogenetic analyses place this Stephanorhinus as a sister group to the clade formed by the woolly rhinoceros (Coelodonta antiquitatis) and Merck’s rhinoceros (Stephanorhinus kirchbergensis). We show that Coelodonta evolved from an early Stephanorhinus lineage, and that this latter genus includes at least two distinct evolutionary lines. The genus Stephanorhinus is therefore currently paraphyletic, and its systematic revision is needed. We demonstrate that sequencing the proteome of Early Pleistocene dental enamel overcomes the limitations of phylogenetic inference based on ancient collagen or DNA. Our approach also provides additional information about the sex and taxonomic assignment of other specimens from Dmanisi. Our findings reveal that proteomic investigation of ancient dental enamel—which is the hardest tissue in vertebrates, and is highly abundant in the fossil record—can push the reconstruction of molecular evolution further back into the Early Pleistocene epoch, beyond the currently known limits of ancient DNA preservation
Recommended from our members
Ancient human genomes and environmental DNA from the cement attaching 2,000 year-old head lice nits
Over the past few decades there has been an increased demand for genome analysis of ancient human remains. Destructive sampling is increasingly difficult for ethical reasons, and previous methods of breaking the skull to access the petrous bone are often forbidden for curatorial reasons, together with teeth which may be missing or too precious to sample. However, most ancient humans carried head lice, and their eggs abound in historical hair specimens. Here we show that host DNA is protected by the cement that glues head lice eggs (nits) to the hair of ancient Argentinian mummies, 1,500–2,000 years old. The cement also preserves ancient environmental DNA of the skin, including the earliest recorded case of Merkel Cell Polyomavirus. We also show that human DNA obtained from nit cement can equal human genome assessment from tooth DNA, can increase assessment from petrous bone by two-fold, and by four-fold DNA over bloodmeal of adult lice a millennium younger. Genome-wide analyses from nit cement DNA also enables identification of the population genetic affinities of ancient humans. In metric studies of the sheaths, the length of the cement tube negatively correlated with the age of the specimens, while hair linear distance between nit and scalp informed about environmental conditions at the time before death. Ectoparasitic lice sheaths on hair, feathers, skins, or mummified remains can offer an alternative, non-destructive source of high-quality ancient DNA from a variety of host taxa and reveal details of their historical environment
The Genomic Landscape of Oceania
Encompassing regions that were amongst the first inhabited by humans
following the out-of-Africa expansion, hosting populations with the highest
levels of archaic hominid introgression, and including Pacific islands that are
the most isolated inhabited locations on the planet, Oceania has a rich, but
understudied, human genomic landscape. Here we describe the first region-wide
analysis of genome-wide data from population groups spanning Oceania and its
surroundings, from island and peninsular southeast Asia to Papua New Guinea,
east across the Pacific through Melanesia, Micronesia, and Polynesia, and west
across the Indian Ocean to related island populations in the Andamans and
Madagascar. In total we generate and analyze genome-wide data from 981
individuals from 92 different populations, 58 separate islands, and 30
countries, representing the most expansive study of Pacific genetics to date.
In each sample we disentangle the Papuan and more recent Austronesian
ancestries, which have admixed in various proportions across this region, using
ancestry-specific analyses, and characterize the distinct patterns of
settlement, migration, and archaic introgression separately in these two
ancestries. We also focus on the patterns of clinically relevant genetic
variation across Oceania--a landscape rippled with strong founder effects and
island-specific genetic drift in allele frequencies--providing an atlas for the
development of precision genetic health strategies in this understudied region
of the world
Origins and genetic legacies of the Caribbean Taino
Significance
Ancient DNA has revolutionized the field of archaeology, but in the Caribbean and other tropical regions of the world, the work has been hampered by poor DNA preservation. We present an ancient human genome from the Caribbean and use it to shed light on the early peopling of the islands. We demonstrate that the ancestors of the so-called “Taino” who inhabited large parts of the Caribbean in pre-Columbian times originated in northern South America, and we find evidence that they had a comparatively large effective population size. We also show that the native components in some modern Caribbean genomes are closely related to the ancient Taino, suggesting that indigenous ancestry in the region has survived through the present day.</jats:p
The first horse herders and the impact of early Bronze Age steppe expansions into Asia
This is the author accepted manuscript. The final version is available from AAAS via the DOI in this recordThe file includes the article, supplementary material and additional supplementary materialThe published version of the supplementary materials are at http://science.sciencemag.org/content/suppl/2018/05/08/science.aar7711.DC1Part of the additional supplementary materials for this article are in ORE at http://hdl.handle.net/10871/32792The Yamnaya expansions from the western steppe into Europe and Asia during the Early Bronze Age (~3000 BCE) are believed to have brought with them Indo-European languages and possibly horse husbandry. We analyze 74 ancient whole-genome sequences from across Inner Asia and Anatolia and show that the Botai people associated with the earliest horse husbandry derived from a hunter-gatherer population deeply diverged from the Yamnaya. Our results also suggest distinct migrations bringing West Eurasian ancestry into South Asia before and after but not at the time of Yamnaya culture. We find no evidence of steppe ancestry in Bronze Age Anatolia from when Indo-European languages are attested there. Thus, in contrast to Europe, Early Bronze Age Yamnaya-related migrations had limited direct genetic impact in Asia.The study was supported by the Lundbeck Foundation (EW), the Danish National Research Foundation (EW), and KU2016 (EW). Research at the Sanger Institute was supported by the Wellcome Trust (grant 206194). RM was supported by an EMBO Long-Term Fellowship (ALTF 133-2017). JK was supported by the Human Frontiers Science Program (LT000402/2017). Botai fieldwork was supported by University of Exeter, Archeology Exploration Fund and Niobe Thompson, Clearwater Documentary. AB was supported by NIH grant 5T32GM007197-43. GK was funded by Riksbankens Jubileumsfond and European Research Council. MP was funded by Netherlands Organization for Scientific Research (NWO), project number 276-70-028, IU was funded by the Higher education commission of Pakistan. Archaeological materials from Sholpan and Grigorievka were obtained with partial financial support of the budget program of the Ministry of Education and Science of the Republic of Kazakhstan “Grant financing of scientific research for 2018-2020” No. AP05133498 “Early Bronze Age of the Upper Irtysh”
Reconstructing the Deep Population History of Central and South America
We report genome-wide ancient DNA from 49 individuals forming four parallel time transects in Belize, Brazil, the Central Andes, and the Southern Cone, each dating to at least 9,000 years ago. The common ancestral population radiated rapidly from just one of the two early branches that contributed to Native Americans today. We document two previously unappreciated streams of gene flow between North and South America. One affected the Central Andes by 4,200 years ago, while the other explains an affinity between the oldest North American genome associated with the Clovis culture and the oldest Central and South Americans from Chile, Brazil, and Belize. However, this was not the primary source for later South Americans, as the other ancient individuals derive from lineages without specific affinity to the Clovis-associated genome, suggesting a population replacement that began at least 9,000 years ago and was followed by substantial population continuity in multiple regions
- …
