14 research outputs found

    Why Are Deep Representations Good Perceptual Quality Features?

    Full text link
    Recently, intermediate feature maps of pre-trained convolutional neural networks have shown significant perceptual quality improvements, when they are used in the loss function for training new networks. It is believed that these features are better at encoding the perceptual quality and provide more efficient representations of input images compared to other perceptual metrics such as SSIM and PSNR. However, there have been no systematic studies to determine the underlying reason. Due to the lack of such an analysis, it is not possible to evaluate the performance of a particular set of features or to improve the perceptual quality even more by carefully selecting a subset of features from a pre-trained CNN. This work shows that the capabilities of pre-trained deep CNN features in optimizing the perceptual quality are correlated with their success in capturing basic human visual perception characteristics. In particular, we focus our analysis on fundamental aspects of human perception, such as the contrast sensitivity and orientation selectivity. We introduce two new formulations to measure the frequency and orientation selectivity of the features learned by convolutional layers for evaluating deep features learned by widely-used deep CNNs such as VGG-16. We demonstrate that the pre-trained CNN features which receive higher scores are better at predicting human quality judgment. Furthermore, we show the possibility of using our method to select deep features to form a new loss function, which improves the image reconstruction quality for the well-known single-image super-resolution problem.Comment: To be presented at ECCV 202

    Visual-Relation Conscious Image Generation from Structured-Text

    No full text

    TENet: Triple Excitation Network for video salient object detection

    No full text
    In this paper, we propose a simple yet effective approach, named Triple Excitation Network, to reinforce the training of video salient object detection (VSOD) from three aspects, spatial, temporal, and online excitations. These excitation mechanisms are designed following the spirit of curriculum learning and aim to reduce learning ambiguities at the beginning of training by selectively exciting feature activations using ground truth. Then we gradually reduce the weight of ground truth excitations by a curriculum rate and replace it by a curriculum complementary map for better and faster convergence. In particular, the spatial excitation strengthens feature activations for clear object boundaries, while the temporal excitation imposes motions to emphasize spatio-temporal salient regions. Spatial and temporal excitations can combat the saliency shifting problem and conflict between spatial and temporal features of VSOD. Furthermore, our semi-curriculum learning design enables the first online refinement strategy for VSOD, which allows exciting and boosting saliency responses during testing without re-training. The proposed triple excitations can easily plug in different VSOD methods. Extensive experiments show the effectiveness of all three excitation methods and the proposed method outperforms state-of-the-art image and video salient object detection methods
    corecore