2,599 research outputs found
BigEAR: Inferring the Ambient and Emotional Correlates from Smartphone-based Acoustic Big Data
This paper presents a novel BigEAR big data framework that employs
psychological audio processing chain (PAPC) to process smartphone-based
acoustic big data collected when the user performs social conversations in
naturalistic scenarios. The overarching goal of BigEAR is to identify moods of
the wearer from various activities such as laughing, singing, crying, arguing,
and sighing. These annotations are based on ground truth relevant for
psychologists who intend to monitor/infer the social context of individuals
coping with breast cancer. We pursued a case study on couples coping with
breast cancer to know how the conversations affect emotional and social well
being. In the state-of-the-art methods, psychologists and their team have to
hear the audio recordings for making these inferences by subjective evaluations
that not only are time-consuming and costly, but also demand manual data coding
for thousands of audio files. The BigEAR framework automates the audio
analysis. We computed the accuracy of BigEAR with respect to the ground truth
obtained from a human rater. Our approach yielded overall average accuracy of
88.76% on real-world data from couples coping with breast cancer.Comment: 6 pages, 10 equations, 1 Table, 5 Figures, IEEE International
Workshop on Big Data Analytics for Smart and Connected Health 2016, June 27,
2016, Washington DC, US
Deuteron and proton NMR study of D₂, p-dichlorobenzene and 1,3,5-trichlorobenzene in bimesogenic liquid crystals with two nematic phases
The solutes dideuterium, 1,3,5-trichlorobenzene and p-dichlorobenzene (pdcb) are co-dissolved in a 61/39 wt% mixture of CBC9CB/5CB, a bimesogenic liquid crystal with two nematic phases. NMR spectra are collected for each solute. The local electric field gradient (FZZ) is obtained from the dideuterium spectrum. A double Maier-Saupe potential (MSMS) is used to rationalize the order parameters of pdcb. The liquid-crystal fields G₁ and G₂ are taken to be due to size and shape interactions and interactions between the solute molecular quadrupole and the mean FZZ of the medium. The FZZ’s obtained from D₂ and G₂ (from pdcb) are compared and discussed
An Online Social Networking Experiment
Online social networking is a pervasive but empirically understudied
phenomenon. Strong public opinions on its consequences exist but are backed up
by little empirical evidence and almost no causally conclusive, experimental
research. The current study tested the psychological effects of posting status
updates on Facebook using an experimental design. For 1 week, participants in
the experimental condition were asked to post more than they usually do,
whereas participants in the control condition received no instructions.
Participants added a lab “Research Profile” as a Facebook friend allowing for
the objective documentation of protocol compliance, participants’ status
updates, and friends’ responses. Results revealed (1) that the experimentally
induced increase in status updating activity reduced loneliness, (2) that the
decrease in loneliness was due to participants feeling more connected to their
friends on a daily basis, and (3) that the effect of posting on loneliness was
independent of direct social feedback (i.e., responses) by friends
NMR study of a bimesogenic liquid crystal with two nematic phases
Recent interest in bimesogenic liquid crystals showing two nematic phases has led us to investigate the nematic mean-field interactions in these nematic phases by using rigid solutes as probes. The nematic potential that is modelled by two independent Maier-Saupe terms is successful in fitting the observed dipolar couplings (order parameters) of para-, meta- and ortho-dichlorobenzene solutes in both the nematic phases of 39 wt% of 4-n-pentyl-4′-cyanobiphenyl (5CB) in α,ω-bis(4-4′-cyanobiphenyl)nonane (CB_C9_CB) to better than the 5% level. The derived liquid-crystal potential parameters G₁ and G₂ for each solute in the N and Ntb phases will be discussed. The most interesting observation is that G1 (associated with size and shape interactions) is almost constant in the Ntb phase, whereas G₂ (associated with longer-range electrostatic interactions) has large variation, even changing sign
Positron annihilation induced Auger electron spectroscopy
Recently, Weiss et al. have demonstrated that it is possible to excite Auger transitions by annihilating core electrons using a low energy (less than 30eV) beam of positrons. This mechanism makes possible a new electron spectroscopy, Positron annihilation induced Auger Electron Spectroscopy (PAES). The probability of exciting an Auger transition is proportional to the overlap of the positron wavefunction with atomic core levels. Since the Auger electron energy provides a signature of the atomic species making the transition, PAES makes it possible to determine the overlap of the positron wavefunction with a particular element. PAES may therefore provide a means of detecting positron-atom complexes. Measurements of PAES intensities from clean and adsorbate covered Cu surfaces are presented which indicate that approx. 5 percent of positrons injected into CU at 25eV produce core annihilations that result in Auger transitions
A fibre forming smectic twist-bent liquid crystalline phase
We demonstrate the nanostructure and filament formation of a novel liquid crystal phase of a dimeric mesogen below the twist–bend nematic phase. The new fibre-forming phase is distinguished by a short-correlated smectic order combined with an additional nanoscale periodicity that is not associated with density modulation
Molecular Hydrogen Formation on Low Temperature Surfaces in Temperature Programmed Desorption Experiments
The study of the formation of molecular hydrogen on low temperature surfaces
is of interest both because it allows to explore elementary steps in the
heterogeneous catalysis of a simple molecule and because of the applications in
astrochemistry. Here we report results of experiments of molecular hydrogen
formation on amorphous silicate surfaces using temperature-programmed
desorption (TPD). In these experiments beams of H and D atoms are irradiated on
the surface of an amorphous silicate sample. The desorption rate of HD
molecules is monitored using a mass spectrometer during a subsequent TPD run.
The results are analyzed using rate equations and the activation energies of
the processes leading to molecular hydrogen formation are obtained from the TPD
data. We show that a model based on a single isotope provides the correct
results for the activation energies for diffusion and desorption of H atoms.
These results can thus be used to evaluate the formation rate of H_2 on dust
grains under the actual conditions present in interstellar clouds.Comment: 30 pages, 1 table, 6 figures. Published versio
Metallic properties of magnesium point contacts
We present an experimental and theoretical study of the conductance and
stability of Mg atomic-sized contacts. Using Mechanically Controllable Break
Junctions (MCBJ), we have observed that the room temperature conductance
histograms exhibit a series of peaks, which suggests the existence of a shell
effect. Its periodicity, however, cannot be simply explained in terms of either
an atomic or electronic shell effect. We have also found that at room
temperature, contacts of the diameter of a single atom are absent. A possible
interpretation could be the occurrence of a metal-to-insulator transition as
the contact radius is reduced, in analogy with what it is known in the context
of Mg clusters. However, our first principle calculations show that while an
infinite linear chain can be insulating, Mg wires with larger atomic
coordinations, as in realistic atomic contacts, are alwaysmetallic. Finally, at
liquid helium temperature our measurements show that the conductance histogram
is dominated by a pronounced peak at the quantum of conductance. This is in
good agreement with our calculations based on a tight-binding model that
indicate that the conductance of a Mg one-atom contact is dominated by a single
fully open conduction channel.Comment: 14 pages, 5 figure
Pressure Dependence of the Elastic Moduli in Aluminum Rich Al-Li Compounds
I have carried out numerical first principles calculations of the pressure
dependence of the elastic moduli for several ordered structures in the
Aluminum-Lithium system, specifically FCC Al, FCC and BCC Li, L1_2 Al_3Li, and
an ordered FCC Al_7Li supercell. The calculations were performed using the full
potential linear augmented plane wave method (LAPW) to calculate the total
energy as a function of strain, after which the data was fit to a polynomial
function of the strain to determine the modulus. A procedure for estimating the
errors in this process is also given. The predicted equilibrium lattice
parameters are slightly smaller than found experimentally, consistent with
other LDA calculations. The computed elastic moduli are within approximately
10% of the experimentally measured moduli, provided the calculations are
carried out at the experimental lattice constant. The LDA equilibrium shear
modulus C11-C12 increases from 59.3 GPa in Al, to 76.0 GPa in Al_7Li, to 106.2
GPa in Al_3Li. The modulus C_44 increases from 38.4 GPa in Al to 46.1 GPa in
Al_7Li, then falls to 40.7 GPa in Al_3Li. All of the calculated elastic moduli
increase with pressure with the exception of BCC Li, which becomes elastically
unstable at about 2 GPa, where C_11-C_12 vanishes.Comment: 17 pages (REVTEX) + 7 postscript figure
- …
