1,803 research outputs found
Microbial residence time is a controlling parameter of the taxonomic composition and functional profile of microbial communities.
A remaining challenge within microbial ecology is to understand the determinants of richness and diversity observed in environmental microbial communities. In a range of systems, including activated sludge bioreactors, the microbial residence time (MRT) has been previously shown to shape the microbial community composition. However, the physiological and ecological mechanisms driving this influence have remained unclear. Here, this relationship is explored by analyzing an activated sludge system fed with municipal wastewater. Using a model designed in this study based on Monod-growth kinetics, longer MRTs were shown to increase the range of growth parameters that enable persistence, resulting in increased richness and diversity in the modeled community. In laboratory experiments, six sequencing batch reactors treating domestic wastewater were operated in parallel at MRTs between 1 and 15 days. The communities were characterized using both 16S ribosomal RNA and non-target messenger RNA sequencing (metatranscriptomic analysis), and model-predicted monotonic increases in richness were confirmed in both profiles. Accordingly, taxonomic Shannon diversity also increased with MRT. In contrast, the diversity in enzyme class annotations resulting from the metatranscriptomic analysis displayed a non-monotonic trend over the MRT gradient. Disproportionately high abundances of transcripts encoding for rarer enzymes occur at longer MRTs and lead to the disconnect between taxonomic and functional diversity profiles
GPU-based ultra-fast direct aperture optimization for online adaptive radiation therapy
Online adaptive radiation therapy (ART) has great promise to significantly
reduce normal tissue toxicity and/or improve tumor control through real-time
treatment adaptations based on the current patient anatomy. However, the major
technical obstacle for clinical realization of online ART, namely the inability
to achieve real-time efficiency in treatment re-planning, has yet to be solved.
To overcome this challenge, this paper presents our work on the implementation
of an intensity modulated radiation therapy (IMRT) direct aperture optimization
(DAO) algorithm on graphics processing unit (GPU) based on our previous work on
CPU. We formulate the DAO problem as a large-scale convex programming problem,
and use an exact method called column generation approach to deal with its
extremely large dimensionality on GPU. Five 9-field prostate and five 5-field
head-and-neck IMRT clinical cases with 5\times5 mm2 beamlet size and
2.5\times2.5\times2.5 mm3 voxel size were used to evaluate our algorithm on
GPU. It takes only 0.7~2.5 seconds for our implementation to generate optimal
treatment plans using 50 MLC apertures on an NVIDIA Tesla C1060 GPU card. Our
work has therefore solved a major problem in developing ultra-fast
(re-)planning technologies for online ART
Beam Orientation Optimization for Intensity Modulated Radiation Therapy using Adaptive l1 Minimization
Beam orientation optimization (BOO) is a key component in the process of IMRT
treatment planning. It determines to what degree one can achieve a good
treatment plan quality in the subsequent plan optimization process. In this
paper, we have developed a BOO algorithm via adaptive l_1 minimization.
Specifically, we introduce a sparsity energy function term into our model which
contains weighting factors for each beam angle adaptively adjusted during the
optimization process. Such an energy term favors small number of beam angles.
By optimizing a total energy function containing a dosimetric term and the
sparsity term, we are able to identify the unimportant beam angles and
gradually remove them without largely sacrificing the dosimetric objective. In
one typical prostate case, the convergence property of our algorithm, as well
as the how the beam angles are selected during the optimization process, is
demonstrated. Fluence map optimization (FMO) is then performed based on the
optimized beam angles. The resulted plan quality is presented and found to be
better than that obtained from unoptimized (equiangular) beam orientations. We
have further systematically validated our algorithm in the contexts of 5-9
coplanar beams for 5 prostate cases and 1 head and neck case. For each case,
the final FMO objective function value is used to compare the optimized beam
orientations and the equiangular ones. It is found that, our BOO algorithm can
lead to beam configurations which attain lower FMO objective function values
than corresponding equiangular cases, indicating the effectiveness of our BOO
algorithm.Comment: 19 pages, 2 tables, and 5 figure
Continuous twin screw rheo-extrusion of an AZ91D magnesium alloy
© The Minerals, Metals & Materials Society and ASM International 2012The twin screw rheo-extrusion (TSRE) is designed to take advantage of the nondendritc microstructure and thixotropic characterization of semisolid-metal slurries and produce simple metal profiles directly from melts. The extrusion equipment consists of a rotor-stator high shear slurry maker, a twin screw extruder, and a die assembly. The process is continuous and has a potential for significantly saving energy, manufacturing cost, and enhancing efficiency. The present investigation was carried out to study the process performance for processing rods of an AZ91D magnesium alloy and the microstructure evolution during processing. The semisolid slurry prepared by the process was characterized by uniformly distributed nondendritic granular primary phase particles. AZ91D rods with uniform and fine microstructures and moderate mechanical properties were produced. For the given slurry making parameters, decreasing extrusion temperature was found to improve microstructures and properties. The mechanisms of particle granulation and refinement and the effect of processing parameters on process performance and thermal management are discussed. © 2012 The Minerals, Metals & Materials Society and ASM International.EPSRC (UK) and Rautomead Lt
Fast Monte Carlo Simulation for Patient-specific CT/CBCT Imaging Dose Calculation
Recently, X-ray imaging dose from computed tomography (CT) or cone beam CT
(CBCT) scans has become a serious concern. Patient-specific imaging dose
calculation has been proposed for the purpose of dose management. While Monte
Carlo (MC) dose calculation can be quite accurate for this purpose, it suffers
from low computational efficiency. In response to this problem, we have
successfully developed a MC dose calculation package, gCTD, on GPU architecture
under the NVIDIA CUDA platform for fast and accurate estimation of the x-ray
imaging dose received by a patient during a CT or CBCT scan. Techniques have
been developed particularly for the GPU architecture to achieve high
computational efficiency. Dose calculations using CBCT scanning geometry in a
homogeneous water phantom and a heterogeneous Zubal head phantom have shown
good agreement between gCTD and EGSnrc, indicating the accuracy of our code. In
terms of improved efficiency, it is found that gCTD attains a speed-up of ~400
times in the homogeneous water phantom and ~76.6 times in the Zubal phantom
compared to EGSnrc. As for absolute computation time, imaging dose calculation
for the Zubal phantom can be accomplished in ~17 sec with the average relative
standard deviation of 0.4%. Though our gCTD code has been developed and tested
in the context of CBCT scans, with simple modification of geometry it can be
used for assessing imaging dose in CT scans as well.Comment: 18 pages, 7 figures, and 1 tabl
Orbit optimization for ASTROD-GW and its time delay interferometry with two arms using CGC ephemeris
ASTROD-GW (ASTROD [Astrodynamical Space Test of Relativity using Optical
Devices] optimized for Gravitation Wave detection) is an optimization of ASTROD
to focus on the goal of detection of gravitation waves. The detection
sensitivity is shifted 52 times toward larger wavelength compared to that of
LISA. The mission orbits of the 3 spacecraft forming a nearly equilateral
triangular array are chosen to be near the Sun-Earth Lagrange points L3, L4 and
L5. The 3 spacecraft range interferometrically with one another with arm length
about 260 million kilometers. In order to attain the requisite sensitivity for
ASTROD-GW, laser frequency noise must be suppressed below the secondary noises
such as the optical path noise, acceleration noise etc. For suppressing laser
frequency noise, we need to use time delay interferometry (TDI) to match the
two different optical paths (times of travel). Since planets and other
solar-system bodies perturb the orbits of ASTROD-GW spacecraft and affect the
(TDI), we simulate the time delay numerically using CGC 2.7 ephemeris
framework. To conform to the ASTROD-GW planning, we work out a set of 20-year
optimized mission orbits of ASTROD-GW spacecraft starting at June 21, 2028, and
calculate the residual optical path differences in the first and second
generation TDI for one-detector case. In our optimized mission orbits for 20
years, changes of arm length are less than 0.0003 AU; the relative Doppler
velocities are less than 3m/s. All the second generation TDI for one-detector
case satisfies the ASTROD-GW requirement.Comment: 17 pages, 7 figures, 1 tabl
Development of a GPU-based Monte Carlo dose calculation code for coupled electron-photon transport
Monte Carlo simulation is the most accurate method for absorbed dose
calculations in radiotherapy. Its efficiency still requires improvement for
routine clinical applications, especially for online adaptive radiotherapy. In
this paper, we report our recent development on a GPU-based Monte Carlo dose
calculation code for coupled electron-photon transport. We have implemented the
Dose Planning Method (DPM) Monte Carlo dose calculation package (Sempau et al,
Phys. Med. Biol., 45(2000)2263-2291) on GPU architecture under CUDA platform.
The implementation has been tested with respect to the original sequential DPM
code on CPU in phantoms with water-lung-water or water-bone-water slab
geometry. A 20 MeV mono-energetic electron point source or a 6 MV photon point
source is used in our validation. The results demonstrate adequate accuracy of
our GPU implementation for both electron and photon beams in radiotherapy
energy range. Speed up factors of about 5.0 ~ 6.6 times have been observed,
using an NVIDIA Tesla C1060 GPU card against a 2.27GHz Intel Xeon CPU
processor.Comment: 13 pages, 3 figures, and 1 table. Paper revised. Figures update
Forecasting Tunisian type 2 diabetes prevalence to 2027: validation of a simple model.
BACKGROUND: Most projections of type 2 diabetes (T2D) prevalence are simply based on demographic change (i.e. ageing). We developed a model to predict future trends in T2D prevalence in Tunisia, explicitly taking into account trends in major risk factors (obesity and smoking). This could improve assessment of policy options for prevention and health service planning. METHODS: The IMPACT T2D model uses a Markov approach to integrate population, obesity and smoking trends to estimate future T2D prevalence. We developed a model for the Tunisian population from 1997 to 2027, and validated the model outputs by comparing with a subsequent T2D prevalence survey conducted in 2005. RESULTS: The model estimated that the prevalence of T2D among Tunisians aged over 25 years was 12.0% in 1997 (95% confidence intervals 9.6%-14.4%), increasing to 15.1% (12.5%-17.4%) in 2005. Between 1997 and 2005, observed prevalence in men increased from 13.5% to 16.1% and in women from 12.9% to 14.1%. The model forecast for a dramatic rise in prevalence by 2027 (26.6% overall, 28.6% in men and 24.7% in women). However, if obesity prevalence declined by 20% in the 10 years from 2013, and if smoking decreased by 20% over 10 years from 2009, a 3.3% reduction in T2D prevalence could be achieved in 2027 (2.5% in men and 4.1% in women). CONCLUSIONS: This innovative model provides a reasonably close estimate of T2D prevalence for Tunisia over the 1997-2027 period. Diabetes burden is now a significant public health challenge. Our model predicts that this burden will increase significantly in the next two decades. Tackling obesity, smoking and other T2D risk factors thus needs urgent action. Tunisian decision makers have therefore defined two strategies: obesity reduction and tobacco control. Responses will be evaluated in future population surveys
GPU-based Iterative Cone Beam CT Reconstruction Using Tight Frame Regularization
X-ray imaging dose from serial cone-beam CT (CBCT) scans raises a clinical
concern in most image guided radiation therapy procedures. It is the goal of
this paper to develop a fast GPU-based algorithm to reconstruct high quality
CBCT images from undersampled and noisy projection data so as to lower the
imaging dose. For this purpose, we have developed an iterative tight frame (TF)
based CBCT reconstruction algorithm. A condition that a real CBCT image has a
sparse representation under a TF basis is imposed in the iteration process as
regularization to the solution. To speed up the computation, a multi-grid
method is employed. Our GPU implementation has achieved high computational
efficiency and a CBCT image of resolution 512\times512\times70 can be
reconstructed in ~5 min. We have tested our algorithm on a digital NCAT phantom
and a physical Catphan phantom. It is found that our TF-based algorithm is able
to reconstrct CBCT in the context of undersampling and low mAs levels. We have
also quantitatively analyzed the reconstructed CBCT image quality in terms of
modulation-transfer-function and contrast-to-noise ratio under various scanning
conditions. The results confirm the high CBCT image quality obtained from our
TF algorithm. Moreover, our algorithm has also been validated in a real
clinical context using a head-and-neck patient case. Comparisons of the
developed TF algorithm and the current state-of-the-art TV algorithm have also
been made in various cases studied in terms of reconstructed image quality and
computation efficiency.Comment: 24 pages, 8 figures, accepted by Phys. Med. Bio
- …
