2,372 research outputs found
Oxynitride glass fibers
Research at the Army Materials Technology Laboratory (AMTL) and elsewhere has shown that many glass properties including elastic modulus, hardness, and corrosion resistance are improved markedly by the substitution of nitrogen for oxygen in the glass structure. Oxynitride glasses, therefore, offer exciting opportunities for making high modulus, high strength fibers. Processes for making oxynitride glasses and fibers of glass compositions similar to commercial oxide glasses, but with considerable enhanced properties, are discussed. We have made glasses with elastic moduli as high as 140 GPa and fibers with moduli of 120 GPa and tensile strengths up to 2900 MPa. AMTL holds a U.S. patent on oxynitride glass fibers, and this presentation discusses a unique process for drawing small diameter oxynitride glass fibers at high drawing rates. Fibers are drawn through a nozzle from molten glass in a molybdenum crucible at 1550 C. The crucible is situated in a furnace chamber in flowing nitrogen, and the fiber is wound in air outside of the chamber, making the process straightforward and commercially feasible. Strengths were considerably improved by improving glass quality to minimize internal defects. Though the fiber strengths were comparable with oxide fibers, work is currently in progress to further improve the elastic modulus and strength of fibers. The high elastic modulus of oxynitride glasses indicate their potential for making fibers with tensile strengths surpassing any oxide glass fibers, and we hope to realize that potential in the near future
Blending of nanoscale and microscale in uniform large-area sculptured thin-film architectures
The combination of large thickness ( m), large--area uniformity (75
mm diameter), high growth rate (up to 0.4 m/min) in assemblies of
complex--shaped nanowires on lithographically defined patterns has been
achieved for the first time. The nanoscale and the microscale have thus been
blended together in sculptured thin films with transverse architectures.
SiO () nanowires were grown by electron--beam evaporation onto
silicon substrates both with and without photoresist lines (1--D arrays) and
checkerboard (2--D arrays) patterns. Atomic self--shadowing due to
oblique--angle deposition enables the nanowires to grow continuously, to change
direction abruptly, and to maintain constant cross--sectional diameter. The
selective growth of nanowire assemblies on the top surfaces of both 1--D and
2--D arrays can be understood and predicted using simple geometrical shadowing
equations.Comment: 17 pages, 9 figure
Cosmological implications of the KATRIN experiment
The upcoming Karlsruhe Tritium Neutrino (KATRIN) experiment will put
unprecedented constraints on the absolute mass of the electron neutrino,
\mnue. In this paper we investigate how this information on \mnue will
affect our constraints on cosmological parameters. We consider two scenarios;
one where \mnue=0 (i.e., no detection by KATRIN), and one where
\mnue=0.3eV. We find that the constraints on \mnue from KATRIN will affect
estimates of some important cosmological parameters significantly. For example,
the significance of and the inferred value of depend
on the results from the KATRIN experiment.Comment: 13 page
Adaptation of the LIGNUM model for simulations of growth and light response in Jack pine
LIGNUM is a whole tree model, developed for Pinus sylvestris in Finland, that combines tree metabolism with a realistic spatial distribution of morphological parts. We hypothesize that its general concepts, which include the pipe model, functional balance, yearly carbon budget, and a set of architectural growth rules, are applicable to all trees. Adaptation of the model to Pinus banksiana, a widespread species of economic importance in North America, is demonstrated. Conversion of the model to Jack pine entailed finding new values for 16 physiological and morphological parameters, and three growth functions. Calibration of the LIGNUM Jack pine model for open grown trees up to 15 years of age was achieved by matching crown appearance and structural parameters (height, foliage biomass, aboveground biomass) with those of real trees. A sensitivity study indicated that uncertainty in the photosynthesis and respiration parameters will primarily cause changes to the net annual carbon gain, which can be corrected through calibration of the growth rate. The effect of a decrease in light level on height, biomass, total tree branch length, and productivity were simulated and compared with field data. Additional studies yielded insight into branch pruning, carbon allocation patterns, crown structure, and carbon stress. We discuss the value of the LIGNUM model as a tool for understanding tree growth and survival dynamics in natural and managed forests
Electrodynamics with Lorentz-violating operators of arbitrary dimension
The behavior of photons in the presence of Lorentz and CPT violation is
studied. Allowing for operators of arbitrary mass dimension, we classify all
gauge-invariant Lorentz- and CPT-violating terms in the quadratic Lagrange
density associated with the effective photon propagator. The covariant
dispersion relation is obtained, and conditions for birefringence are
discussed. We provide a complete characterization of the coefficients for
Lorentz violation for all mass dimensions via a decomposition using
spin-weighted spherical harmonics. The resulting nine independent sets of
spherical coefficients control birefringence, dispersion, and anisotropy. We
discuss the restriction of the general theory to various special models,
including among others the minimal Standard-Model Extension, the isotropic
limit, the case of vacuum propagation, the nonbirefringent limit, and the
vacuum-orthogonal model. The transformation of the spherical coefficients for
Lorentz violation between the laboratory frame and the standard Sun-centered
frame is provided. We apply the results to various astrophysical observations
and laboratory experiments. Astrophysical searches of relevance include studies
of birefringence and of dispersion. We use polarimetric and dispersive data
from gamma-ray bursts to set constraints on coefficients for Lorentz violation
involving operators of dimensions four through nine, and we describe the mixing
of polarizations induced by Lorentz and CPT violation in the cosmic-microwave
background. Laboratory searches of interest include cavity experiments. We
present the theory for searches with cavities, derive the experiment-dependent
factors for coefficients in the vacuum-orthogonal model, and predict the
corresponding frequency shift for a circular-cylindrical cavity.Comment: 58 pages two-column REVTeX, accepted in Physical Review
Bounds on Lorentz and CPT Violation from the Earth-Ionosphere Cavity
Electromagnetic resonant cavities form the basis of many tests of Lorentz
invariance involving photons. The effects of some forms of Lorentz violation
scale with cavity size. We investigate possible signals of violations in the
naturally occurring resonances formed in the Earth-ionosphere cavity.
Comparison with observed resonances places the first terrestrial constraints on
coefficients associated with dimension-three Lorentz-violating operators at the
level of 10^{-20} GeV.Comment: 8 pages REVTe
Thin-Film Metamaterials called Sculptured Thin Films
Morphology and performance are conjointed attributes of metamaterials, of
which sculptured thin films (STFs) are examples. STFs are assemblies of
nanowires that can be fabricated from many different materials, typically via
physical vapor deposition onto rotating substrates. The curvilinear--nanowire
morphology of STFs is determined by the substrate motions during fabrication.
The optical properties, especially, can be tailored by varying the morphology
of STFs. In many cases prototype devices have been fabricated for various
optical, thermal, chemical, and biological applications.Comment: to be published in Proc. ICTP School on Metamaterials (Augsut 2009,
Sibiu, Romania
Signals for Lorentz Violation in Post-Newtonian Gravity
The pure-gravity sector of the minimal Standard-Model Extension is studied in
the limit of Riemann spacetime. A method is developed to extract the modified
Einstein field equations in the limit of small metric fluctuations about the
Minkowski vacuum, while allowing for the dynamics of the 20 independent
coefficients for Lorentz violation. The linearized effective equations are
solved to obtain the post-newtonian metric. The corresponding post-newtonian
behavior of a perfect fluid is studied and applied to the gravitating many-body
system. Illustrative examples of the methodology are provided using bumblebee
models. The implications of the general theoretical results are studied for a
variety of existing and proposed gravitational experiments, including lunar and
satellite laser ranging, laboratory experiments with gravimeters and torsion
pendula, measurements of the spin precession of orbiting gyroscopes, timing
studies of signals from binary pulsars, and the classic tests involving the
perihelion precession and the time delay of light. For each type of experiment
considered, estimates of the attainable sensitivities are provided. Numerous
effects of local Lorentz violation can be studied in existing or near-future
experiments at sensitivities ranging from parts in 10^4 down to parts in
10^{15}.Comment: 46 pages two-column REVTeX, accepted in Physical Review
Rapid Oscillations in Cataclysmic Variables. XVI. DW Cancri
We report photometry and spectroscopy of the novalike variable DW Cancri. The
spectra show the usual broad H and He emission lines, with an excitation and
continuum slope characteristic of a moderately high accretion rate. A
radial-velocity search yields strong detections at two periods, 86.1015(3) min
and 38.58377(6) min. We interpret these as respectively the orbital period
P_orb of the binary, and the spin period P_spin of a magnetic white dwarf. The
light curve also shows the spin period, plus an additional strong signal at
69.9133(10) min, which coincides with the difference frequency
1/P_spin-1/P_orb. These periods are stable over the 1 year baseline of
measurement.
This triply-periodic structure mimics the behavior of several
well-credentialed members of the "DQ Herculis" (intermediate polar) class of
cataclysmic variables. DQ Her membership is also suggested by the mysteriously
strong sideband signal (at nu_spin-nu_orb), attesting to a strong pulsed flux
at X-ray/EUV/UV wavelengths. DW Cnc is a new member of this class, and would be
an excellent target for extended observation at these wavelengths.Comment: PDF, 28 pages, 6 tables, 9 figures; accepted, in press, to appear
June 2004, PASP; more info at http://cba.phys.columbia.edu
- …
