1,267 research outputs found
Separation of the first- and second-order contributions in magneto-optic Kerr effect magnetometry of epitaxial FeMn/NiFe bilayers
The influence of second-order magneto-optic effects on Kerr effect
magnetometry of epitaxial exchange coupled FeMn/NiFe-bilayers is investigated.
A procedure for separation of the first- and second-order contributions is
presented. The full angular dependence of both contributions during the
magnetization reversal is extracted from the experimental data and presented
using gray scaled magnetization reversal diagrams. The theoretical description
of the investigated system is based on an extended Stoner-Wohlfarth model,
which includes an induced unidirectional and fourfold anisotropy in the
ferromagnet, caused by the coupling to the antiferromagnet. The agreement
between the experimental data and the theoretical model for both the first- and
second-order contributions are good, although a coherent reversal of the
magnetization is assumed in the model.Comment: 6 pages, 7 figures, submitted to J. Appl. Phy
Lorentz Violation and Short-Baseline Neutrino Experiments
A general discussion is given of signals for broken Lorentz symmetry in
short-baseline neutrino experiments. Among the effects that Lorentz violation
can introduce are a dependence on energy differing from that of the usual
massive-neutrino solution and a dependence on the direction of neutrino
propagation. Using the results of the LSND experiment, explicit analysis of the
effects of broken Lorentz symmetry yields a nonzero value (3+/-1) x 10^{-19}
GeV for a combination of coefficients for Lorentz violation. This lies in the
range expected for effects originating from the Planck scale in an underlying
unified theory.Comment: 4 pages REVTe
Bounds on higher-order Lorentz-violating photon sector coefficients from an asymmetric optical ring resonator experiment
Optical resonators provide a powerful tool for testing aspects of Lorentz
invariance. Here, we present a reanalysis of an experiment where a path
asymmetry was created in an optical ring resonator by introducing a dielectric
prism in one arm. The frequency difference of the two fundamental
counter-propagating modes was then recorded as the apparatus was
orientation-modulated in the laboratory. By assuming that the minimal
Standard-Model Extension coefficients vanish we are able to place bounds on
higher-order parity-odd Lorentz-violating coefficients of the Standard-Model
Extension. The results presented in this work set the first constraints on two
previously unbounded linear combinations of d=8 parity-odd nonbirefringent
nondispersive coefficients of the photon sector.Comment: 6 pages, 4 figures, 3 tables, accepted for publication in Physics
Letters
Cost-effectiveness of managing Natura 2000 sites: an exploratory study for Finland, Germany, the Netherlands and Poland
Natura 2000 sites are expected to assure the long-term survival of Europe's most valuable and threatened species and habitats. It follows that successful management of the sites is of great importance. Next to goal attainment, cost-effectiveness is increasingly recognised as a key requirement for gaining social and political acceptance for costly conservation measures. We identify and qualitatively examine issues of cost-effectiveness related to the design and implementation of management measures in Natura 2000 sites in Finland, Germany, the Netherlands and Poland. Given the wide variety of management design and implementation options within the four countries, our study is purely of an exploratory nature. We derive recommendations for improving the cost-effectiveness of management in Natura 2000 sites and for future research. Examples of policy recommendations include guaranteeing the availability of funds for longer periods, and ensuring the appropriate allocation of funds between the different tasks of designing and implementing management plans. Further research should examine the cost-effectiveness of controversial suggestions such as, for example, more tailored payment schemes for conservation measures that result in higher ecological outputs but are costly to administer. Moreover, more research is needed to better understand how rules for administrations, as well as rules and governance structures for tasks within administrations, should be designed
The Phenion (R) Full-Thickness Skin Model for Percutaneous Absorption Testing
In recent years many efforts have been made to replace dermal toxicity testing of chemicals in the animal by in vitro assays. As a member of a German research consortium, we have previously contributed to the validation of an in vitro test protocol for percutaneous absorption studies on the basis of reconstructed human epidermis and both human and pig skin ex vivo. Aiming to assess the barrier properties of a newly developed reconstructed skin model, this protocol has now been transferred to the Phenion (R) Full-Thickness Skin Model (FT model). The permeation of testosterone and caffeine was quantified in parallel to that of pig skin using Franz-type diffusion cells. In addition, the permeation of benzoic acid and nicotine was studied. As expected, the FT model is more permeable than pig skin, yet its barrier properties are well in accordance with those of reconstructed human epidermis when compared to previous data. In fact, the FT model most efficiently retards testosterone as the compound of highest lipophilicity, which can be explained by an additional uptake by a reservoir formed by the dermis equivalent. Thus, the structure closely parallels human skin. In consequence, the Phenion FT model appears to be suitable for percutaneous absorption studies in hazard analysis and should be subjected to a catch-up validation study. Copyright (C) 2009 S. Karger AG, Base
Ferromagnetic resonance force microscopy on a thin permalloy film
Ferromagnetic Resonance Force Microscopy (FMRFM) offers a means of performing
local ferromagnetic resonance. We have studied the evolution of the FMRFM force
spectra in a continuous 50 nm thick permalloy film as a function of probe-film
distance and performed numerical simulations of the intensity of the FMRFM
probe-film interaction force, accounting for the presence of the localized
strongly nonuniform magnetic field of the FMRFM probe magnet. Excellent
agreement between the experimental data and the simulation results provides
insight into the mechanism of FMR mode excitation in an FMRFM experiment.Comment: 9 pages, 2 figure
Insights into ultrafast demagnetization in pseudo-gap half metals
Interest in femtosecond demagnetization experiments was sparked by Bigot's
discovery in 1995. These experiments unveil the elementary mechanisms coupling
the electrons' temperature to their spin order. Even though first quantitative
models describing ultrafast demagnetization have just been published within the
past year, new calculations also suggest alternative mechanisms.
Simultaneously, the application of fast demagnetization experiments has been
demonstrated to provide key insight into technologically important systems such
as high spin polarization metals, and consequently there is broad interest in
further understanding the physics of these phenomena. To gain new and relevant
insights, we perform ultrafast optical pump-probe experiments to characterize
the demagnetization processes of highly spin-polarized magnetic thin films on a
femtosecond time scale. Previous studies have suggested shifting the Fermi
energy into the center of the gap by tuning the number of electrons and thereby
to study its influence on spin-flip processes. Here we show that choosing
isoelectronic Heusler compounds (Co2MnSi, Co2MnGe and Co2FeAl) allows us to
vary the degree of spin polarization between 60% and 86%. We explain this
behavior by considering the robustness of the gap against structural disorder.
Moreover, we observe that Co-Fe-based pseudo gap materials, such as partially
ordered Co-Fe-Ge alloys and also the well-known Co-Fe-B alloys, can reach
similar values of the spin polarization. By using the unique features of these
metals we vary the number of possible spin-flip channels, which allows us to
pinpoint and control the half metals electronic structure and its influence
onto the elementary mechanisms of ultrafast demagnetization.Comment: 17 pages, 4 figures, plus Supplementary Informatio
Effective magnetic fields in degenerate atomic gases induced by light beams with orbital angular momenta
We investigate the influence of two resonant laser beams on the mechanical
properties of degenerate atomic gases. The control and probe beams of light are
considered to have Orbital Angular Momenta (OAM) and act on the three-level
atoms in the Electromagnetically Induced Transparency (EIT) configuration. The
theory is based on the explicit analysis of the quantum dynamics of cold atoms
coupled with two laser beams. Using the adiabatic approximation, we obtain an
effective equation of motion for the atoms driven to the dark state. The
equation contains a vector potential type interaction as well as an effective
trapping potential. The effective magnetic field is shown to be oriented along
the propagation direction of the control and probe beams containing OAM. Its
spatial profile can be controlled by choosing proper laser beams. We
demonstrate how to generate a constant effective magnetic field, as well as a
field exhibiting a radial distance dependence. The resulting effective magnetic
field can be concentrated within a region where the effective trapping
potential holds the atoms. The estimated magnetic length can be considerably
smaller than the size of the atomic cloud.Comment: 11 pages, 5 figures Corrected some mistakes in equation
Josephson effect between trapped Bose-Einstein condensates
We study the Josephson effect between atomic Bose-Einstein condensates. By
drawing on an electrostatic analogy, we derive a semiclassical functional
expression for the three-dimensional Josephson coupling energy in terms of the
condensate density. Estimates of the capacitive energy and of the Josephson
plasma frequency are also given. The effect of dissipation due to the
incoherent exchange of normal atoms is analysed. We conclude that coherent
Josephson dynamics may already be observable in current experimental systems.Comment: 4 pages, RevTe
- …
