822 research outputs found
‘It stays with you’: multiple evocative representations of dance and future possibilities for studies in sport and physical cultures
This article considers the integration of arts-based representations via poetic narratives together with artistic representation on dancing embodiment so as to continue an engagement with debates regarding multiple forms/representations. Like poetry, visual images are unique and can evoke particular kinds of emotional and visceral responses, meaning that alternative representational forms can resonate in different and powerful ways. In the article, we draw on grandparent-grandchild interactions, narrative poetry, and artistic representations of dance in order to illustrate how arts-based methods might synergise to offer new ways of ‘knowing’ and ‘seeing’. The expansion of the visual arts into interdisciplinary methodological innovations is a relatively new, and sometimes contentious approach, in studies of sport and exercise. We raise concerns regarding the future for more arts-based research in the light of an ever-changing landscape of a neoliberal university culture that demands high productivity in reductionist terms of what counts as ‘output’, often within very restricted time-frames. Heeding feminist calls for ‘slow academies’ that attempt to ‘change’ time collectively, and challenge the demands of a fast-paced audit culture, we consider why it is worth enabling creative and arts-based methods to continue to develop and flourish in studies of sport, exercise and health, despite the mounting pressures to ‘perform’
Decoupling Inflation From the String Scale
When Inflation is embedded in a fundamental theory, such as string theory, it
typically begins when the Universe is already substantially larger than the
fundamental scale [such as the one defined by the string length scale]. This is
naturally explained by postulating a pre-inflationary era, during which the
size of the Universe grew from the fundamental scale to the initial
inflationary scale. The problem then arises of maintaining the [presumed]
initial spatial homogeneity throughout this era, so that, when it terminates,
Inflation is able to begin in its potential-dominated state. Linde has proposed
that a spacetime with compact negatively curved spatial sections can achieve
this, by means of chaotic mixing. Such a compactification will however lead to
a Casimir energy, which can lead to effects that defeat the purpose unless the
coupling to gravity is suppressed. We estimate the value of this coupling
required by the proposal, and use it to show that the pre-inflationary
spacetime is stable, despite the violation of the Null Energy Condition
entailed by the Casimir energy.Comment: 24 pages, 5 eps figures, references added, stylistic changes, version
to appear in Classical and Quantum Gravit
Effects of the Neutron Spin-Orbit Density on Nuclear Charge Density in Relativistic Models
The neutron spin-orbit density contributes to the nuclear charge density as a
relativistic effect. The contribution is enhanced by the effective mass
stemming from the Lorentz-scalar potential in relativistic models. This
enhancement explains well the difference between the cross sections of elastic
electron scattering off Ca and Ca which was not reproduced in
non-relativistic models. The spin-orbit density will be examined in more detail
in electron scattering off unstable nuclei which would be available in the
future.Comment: 4 pages with 3 eps figures, revte
Remarks on 2+1 Self-dual Chern-Simons Gravity
We study 2+1 Chern-Simons gravity at the classical action level. In
particular we rederive the linear combinations of the ``standard'' and
``exotic'' Einstein actions, from the (anti) self-duality of the ``internal''
Lorentzian indices. The relation to a genuine four-dimensional (anti)self-dual
topological theory greatly facilitates the analysis and its relation to
hyperbolic three-dimensional geometry. Finally a non-abelian vector field
``dual'' action is also obtained.Comment: 16+1 pages, LaTeX file, no figures, clarifications and comments
added, typos corrected and one reference adde
Neutron charge form factor at large
The neutron charge form factor is determined from an analysis of
the deuteron quadrupole form factor data. Recent calculations, based
on a variety of different model interactions and currents, indicate that the
contributions associated with the uncertain two-body operators of shorter range
are relatively small for , even at large momentum transfer . Hence,
can be extracted from at large without undue
systematic uncertainties from theory.Comment: 8 pages, 3 figure
Consistent Treatment of Relativistic Effects in Electrodisintegration of the Deuteron
The influence of relativistic contributions to deuteron electrodisintegration
is systematically studied in various kinematic regions of energy and momentum
transfer. As theoretical framework the equation-of-motion and the unitarily
equivalent S-matrix approaches are used. In a (p/M)-expansion, all leading
order relativistic -exchange contributions consistent with the Bonn OBEPQ
model are included. In addition, static heavy meson exchange currents including
boost terms, -currents, and -isobar contributions
are considered. Sizeable effects from the various relativistic two-body
contributions, mainly from -exchange, have been found in inclusive form
factors and exclusive structure functions for a variety of kinematic regions.Comment: 41 pages revtex including 15 postscript figure
A Measurement of the Electric Form Factor of the Neutron through at (GeV/c)
We report the first measurement of the neutron electric form factor
via using a solid polarized target. was
determined from the beam-target asymmetry in the scattering of longitudinally
polarized electrons from polarized deuterated ammonia, ND. The
measurement was performed in Hall C at Thomas Jefferson National Accelerator
Facility (TJNAF) in quasi free kinematics with the target polarization
perpendicular to the momentum transfer. The electrons were detected in a
magnetic spectrometer in coincidence with neutrons in a large solid angle
segmented detector. We find at (GeV/c).Comment: Latex2e 5 pages, 3 figure
Electromagnetic Form Factors of the Nucleon in an Improved Quark Model
Nucleon electromagnetic form factors are studied in the cloudy bag model
(CBM) with center-of-mass and recoil corrections. This is the first
presentation of a full set of nucleon form factors using the CBM. The center of
mass motion is eliminated via several different momentum projection techniques
and the results are compared. It is found that the shapes of these form factors
are significantly improved with respect to the experimental data if the Lorentz
contraction of the internal structure of the baryon is also appropriately taken
into account.Comment: revtex, 28 pages, 8 ps figs include
On commensurable hyperbolic Coxeter groups
For Coxeter groups acting non-cocompactly but with finite covolume on real hyperbolic space Hn, new methods are presented to distinguish them up to (wide) commensurability. We exploit these ideas and determine the commensurability classes of all hyperbolic Coxeter groups whose fundamental polyhedra are pyramids over a product of two simplices of positive dimensions
Entropy vs. Action in the (2+1)-Dimensional Hartle-Hawking Wave Function
In most attempts to compute the Hartle-Hawking ``wave function of the
universe'' in Euclidean quantum gravity, two important approximations are made:
the path integral is evaluated in a saddle point approximation, and only the
leading (least action) extremum is taken into account. In (2+1)-dimensional
gravity with a negative cosmological constant, the second assumption is shown
to lead to incorrect results: although the leading extremum gives the most
important single contribution to the path integral, topologically inequivalent
instantons with larger actions occur in great enough numbers to predominate.
One can thus say that in 2+1 dimensions --- and possibly in 3+1 dimensions as
well --- entropy dominates action in the gravitational path integral.Comment: 17 page
- …
