34,671 research outputs found

    On-Body Channel Measurement Using Wireless Sensors

    Get PDF
    © 2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.This post-acceptance version of the paper is essentially complete, but may differ from the official copy of record, which can be found at the following web location (subscription required to access full paper): http://dx.doi.org/10.1109/TAP.2012.219693

    A critique of scaling behaviour in non-linear structure formation scenarios

    Full text link
    Moments of the BBGKY equations for spatial correlation functions of cosmological density perturbations are used to obtain a differential equation for the evolution of the dimensionless function, h=(v/a˙x)h = - ({v/{\dot{a}x}}), where vv is the mean relative pair velocity. The BBGKY equations are closed using a hierarchical scaling ansatz for the 3-point correlation function. Scale-invariant solutions derived earlier by Davis and Peebles are then used in the non-linear regime, along with the generalised stable clustering hypothesis (hh \to const.), to obtain an expression for the asymptotic value of hh, in terms of the power law index of clustering, γ\gamma,and the tangential and radial velocity dispersions. The Davis-Peebles solution is found to require that tangential dispersions are larger than radial ones, in the non-linear regime; this can be understood on physical grounds. Finally, stability analysis of the solution demonstrates that the allowed asymptotic values of hh, consistent with the stable clustering hypothesis, lie in the range 0h1/20 \leq h \leq 1/2. Thus, if the Davis-Peebles scale-invariant solution (and the hierarchical model for the 3-pt function) is correct, the standard stable clustering picture (h1h \to 1 as ξˉ\bar\xi \to \infty) is not allowed in the non-linear regime of structure formation.Comment: 14 pages, no figures. Scheduled to appear in ApJ, Mar 1 issue. Final version, contains added discussion to match the accepted versio

    Improved Relation Extraction with Feature-Rich Compositional Embedding Models

    Full text link
    Compositional embedding models build a representation (or embedding) for a linguistic structure based on its component word embeddings. We propose a Feature-rich Compositional Embedding Model (FCM) for relation extraction that is expressive, generalizes to new domains, and is easy-to-implement. The key idea is to combine both (unlexicalized) hand-crafted features with learned word embeddings. The model is able to directly tackle the difficulties met by traditional compositional embeddings models, such as handling arbitrary types of sentence annotations and utilizing global information for composition. We test the proposed model on two relation extraction tasks, and demonstrate that our model outperforms both previous compositional models and traditional feature rich models on the ACE 2005 relation extraction task, and the SemEval 2010 relation classification task. The combination of our model and a log-linear classifier with hand-crafted features gives state-of-the-art results.Comment: 12 pages for EMNLP 201

    Accurate determination of the Lagrangian bias for the dark matter halos

    Get PDF
    We use a new method, the cross power spectrum between the linear density field and the halo number density field, to measure the Lagrangian bias for dark matter halos. The method has several important advantages over the conventional correlation function analysis. By applying this method to a set of high-resolution simulations of 256^3 particles, we have accurately determined the Lagrangian bias, over 4 magnitudes in halo mass, for four scale-free models with the index n=-0.5, -1.0, -1.5 and -2.0 and three typical CDM models. Our result for massive halos with MMM \ge M_* (MM_* is a characteristic non-linear mass) is in very good agreement with the analytical formula of Mo & White for the Lagrangian bias, but the analytical formula significantly underestimates the Lagrangian clustering for the less massive halos $M < M_*. Our simulation result however can be satisfactorily described, with an accuracy better than 15%, by the fitting formula of Jing for Eulerian bias under the assumption that the Lagrangian clustering and the Eulerian clustering are related with a linear mapping. It implies that it is the failure of the Press-Schechter theories for describing the formation of small halos that leads to the inaccuracy of the Mo & White formula for the Eulerian bias. The non-linear mapping between the Lagrangian clustering and the Eulerian clustering, which was speculated as another possible cause for the inaccuracy of the Mo & White formula, must at most have a second-order effect. Our result indicates that the halo formation model adopted by the Press-Schechter theories must be improved.Comment: Minor changes; accepted for publication in ApJ (Letters) ; 11 pages with 2 figures include

    Independent Orbiter Assessment (IOA): Analysis of the life support and airlock support subsystems

    Get PDF
    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. This report documents the independent analysis results corresponding to the Orbiter Life Support System (LSS) and Airlock Support System (ALSS). Each level of hardware was evaluated and analyzed for possible failure modes and effects. Criticality was assigned based upon the severity of the effect for each failure mode. The LSS provides for the management of the supply water, collection of metabolic waste, management of waste water, smoke detection, and fire suppression. The ALSS provides water, oxygen, and electricity to support an extravehicular activity in the airlock

    Constraints on z~10 Galaxies from the Deepest HST NICMOS Fields

    Full text link
    We use all available fields with deep NICMOS imaging to search for J dropouts (H<28) at z~10. Our primary data set for this search were the two J+H NICMOS parallel fields taken with the ACS HUDF. The 5 sigma limiting mags were 28.6 in J and 28.5 in H. Several shallower fields were also used: J+H NICMOS frames available over the HDF North, the HDF South NICMOS parallel, and the ACS HUDF. The primary selection criterion was (J-H)>1.8. 11 such sources were found in all search fields using this criterion. 8 of these were clearly ruled out as credible z~10 sources, either as a result of detections (>2 sigma) blueward of J or their colors redward of the break (H-K~1.5). The nature of the 3 remaining sources could not be determined from the data. The number appears consistent with the expected contamination from low-z interlopers. Analysis of the stacked images for the 3 candidates also suggests contamination. Regardless of their true redshifts, the actual number of z~10 sources must be <=3. To assess the significance of these results, two lower redshift samples (a z~3.8 B-dropout and z~6 i-dropout sample) were projected to z~8-12 using a (1+z)^{-1} size scaling. They were added to the image frames, and the selection repeated, giving 15.6 and 4.8 J-dropouts, respectively. This suggests that to the limit of this probe (0.3 L*) there has been evolution from z~3.8 and possibly from z~6. This is consistent with the strong evolution already noted at z~6 and z~7.5 relative to z~3-4. Even assuming that 3 sources from this probe are at z~10, the rest-frame continuum UV (~1500 A) luminosity density at z~10 (integrated down to 0.3 L*) is just 0.19_{-0.09}^{+0.13}x that at z~3.8 (or 0.19_{-0.10}^{+0.15}x including cosmic variance). However, if none of our sources is at z~10, this ratio has a 1 sigma upper limit of 0.07. (abridged)Comment: 13 pages, 3 figures, 2 tables, accepted for publication in the Astrophysical Journal Letter

    The Pairwise Peculiar Velocity Dispersion of Galaxies: Effects of the Infall

    Get PDF
    We study the reliability of the reconstruction method which uses a modelling of the redshift distortions of the two-point correlation function to estimate the pairwise peculiar velocity dispersion of galaxies. In particular, the dependence of this quantity on different models for the infall velocity is examined for the Las Campanas Redshift Survey. We make extensive use of numerical simulations and of mock catalogs derived from them to discuss the effect of a self-similar infall model, of zero infall, and of the real infall taken from the simulation. The implications for two recent discrepant determinations of the pairwise velocity dispersion for this survey are discussed.Comment: minor changes in the discussion; accepted for publication in ApJ; 8 pages with 2 figures include

    Calibrating the Galaxy Halo - Black Hole Relation Based on the Clustering of Quasars

    Full text link
    The observed number counts of quasars may be explained either by long-lived activity within rare massive hosts, or by short-lived activity within smaller, more common hosts. It has been argued that quasar lifetimes may therefore be inferred from their clustering length, which determines the typical mass of the quasar host. Here we point out that the relationship between the mass of the black-hole and the circular velocity of its host dark-matter halo is more fundamental to the determination of the clustering length. In particular, the clustering length observed in the 2dF quasar redshift survey is consistent with the galactic halo - black-hole relation observed in local galaxies, provided that quasars shine at ~10-100% of their Eddington luminosity. The slow evolution of the clustering length with redshift inferred in the 2dF quasar survey favors a black-hole mass whose redshift-independent scaling is with halo circular velocity, rather than halo mass. These results are independent from observations of the number counts of bright quasars which may be used to determine the quasar lifetime and its dependence on redshift. We show that if quasar activity results from galaxy mergers, then the number counts of quasars imply an episodic quasar lifetime that is set by the dynamical time of the host galaxy rather than by the Salpeter time. Our results imply that as the redshift increases, the central black-holes comprise a larger fraction of their host galaxy mass and the quasar lifetime gets shorter.Comment: 10 pages, 5 figures. Submitted to Ap
    corecore