34,671 research outputs found
On-Body Channel Measurement Using Wireless Sensors
© 2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective
works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.This post-acceptance version of the paper is essentially complete, but may differ from the official copy of record, which can be found at the following web location (subscription required to access full paper): http://dx.doi.org/10.1109/TAP.2012.219693
A critique of scaling behaviour in non-linear structure formation scenarios
Moments of the BBGKY equations for spatial correlation functions of
cosmological density perturbations are used to obtain a differential equation
for the evolution of the dimensionless function, ,
where is the mean relative pair velocity. The BBGKY equations are closed
using a hierarchical scaling ansatz for the 3-point correlation function.
Scale-invariant solutions derived earlier by Davis and Peebles are then used in
the non-linear regime, along with the generalised stable clustering hypothesis
( const.), to obtain an expression for the asymptotic value of , in
terms of the power law index of clustering, ,and the tangential and
radial velocity dispersions. The Davis-Peebles solution is found to require
that tangential dispersions are larger than radial ones, in the non-linear
regime; this can be understood on physical grounds. Finally, stability analysis
of the solution demonstrates that the allowed asymptotic values of ,
consistent with the stable clustering hypothesis, lie in the range . Thus, if the Davis-Peebles scale-invariant solution (and the
hierarchical model for the 3-pt function) is correct, the standard stable
clustering picture ( as ) is not allowed in the
non-linear regime of structure formation.Comment: 14 pages, no figures. Scheduled to appear in ApJ, Mar 1 issue. Final
version, contains added discussion to match the accepted versio
Improved Relation Extraction with Feature-Rich Compositional Embedding Models
Compositional embedding models build a representation (or embedding) for a
linguistic structure based on its component word embeddings. We propose a
Feature-rich Compositional Embedding Model (FCM) for relation extraction that
is expressive, generalizes to new domains, and is easy-to-implement. The key
idea is to combine both (unlexicalized) hand-crafted features with learned word
embeddings. The model is able to directly tackle the difficulties met by
traditional compositional embeddings models, such as handling arbitrary types
of sentence annotations and utilizing global information for composition. We
test the proposed model on two relation extraction tasks, and demonstrate that
our model outperforms both previous compositional models and traditional
feature rich models on the ACE 2005 relation extraction task, and the SemEval
2010 relation classification task. The combination of our model and a
log-linear classifier with hand-crafted features gives state-of-the-art
results.Comment: 12 pages for EMNLP 201
Accurate determination of the Lagrangian bias for the dark matter halos
We use a new method, the cross power spectrum between the linear density
field and the halo number density field, to measure the Lagrangian bias for
dark matter halos. The method has several important advantages over the
conventional correlation function analysis. By applying this method to a set of
high-resolution simulations of 256^3 particles, we have accurately determined
the Lagrangian bias, over 4 magnitudes in halo mass, for four scale-free models
with the index n=-0.5, -1.0, -1.5 and -2.0 and three typical CDM models. Our
result for massive halos with ( is a characteristic non-linear
mass) is in very good agreement with the analytical formula of Mo & White for
the Lagrangian bias, but the analytical formula significantly underestimates
the Lagrangian clustering for the less massive halos $M < M_*. Our simulation
result however can be satisfactorily described, with an accuracy better than
15%, by the fitting formula of Jing for Eulerian bias under the assumption that
the Lagrangian clustering and the Eulerian clustering are related with a linear
mapping. It implies that it is the failure of the Press-Schechter theories for
describing the formation of small halos that leads to the inaccuracy of the Mo
& White formula for the Eulerian bias. The non-linear mapping between the
Lagrangian clustering and the Eulerian clustering, which was speculated as
another possible cause for the inaccuracy of the Mo & White formula, must at
most have a second-order effect. Our result indicates that the halo formation
model adopted by the Press-Schechter theories must be improved.Comment: Minor changes; accepted for publication in ApJ (Letters) ; 11 pages
with 2 figures include
Independent Orbiter Assessment (IOA): Analysis of the life support and airlock support subsystems
The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. This report documents the independent analysis results corresponding to the Orbiter Life Support System (LSS) and Airlock Support System (ALSS). Each level of hardware was evaluated and analyzed for possible failure modes and effects. Criticality was assigned based upon the severity of the effect for each failure mode. The LSS provides for the management of the supply water, collection of metabolic waste, management of waste water, smoke detection, and fire suppression. The ALSS provides water, oxygen, and electricity to support an extravehicular activity in the airlock
Constraints on z~10 Galaxies from the Deepest HST NICMOS Fields
We use all available fields with deep NICMOS imaging to search for J dropouts
(H<28) at z~10. Our primary data set for this search were the two J+H NICMOS
parallel fields taken with the ACS HUDF. The 5 sigma limiting mags were 28.6 in
J and 28.5 in H. Several shallower fields were also used: J+H NICMOS frames
available over the HDF North, the HDF South NICMOS parallel, and the ACS HUDF.
The primary selection criterion was (J-H)>1.8. 11 such sources were found in
all search fields using this criterion. 8 of these were clearly ruled out as
credible z~10 sources, either as a result of detections (>2 sigma) blueward of
J or their colors redward of the break (H-K~1.5). The nature of the 3 remaining
sources could not be determined from the data. The number appears consistent
with the expected contamination from low-z interlopers. Analysis of the stacked
images for the 3 candidates also suggests contamination. Regardless of their
true redshifts, the actual number of z~10 sources must be <=3. To assess the
significance of these results, two lower redshift samples (a z~3.8 B-dropout
and z~6 i-dropout sample) were projected to z~8-12 using a (1+z)^{-1} size
scaling. They were added to the image frames, and the selection repeated,
giving 15.6 and 4.8 J-dropouts, respectively. This suggests that to the limit
of this probe (0.3 L*) there has been evolution from z~3.8 and possibly from
z~6. This is consistent with the strong evolution already noted at z~6 and
z~7.5 relative to z~3-4. Even assuming that 3 sources from this probe are at
z~10, the rest-frame continuum UV (~1500 A) luminosity density at z~10
(integrated down to 0.3 L*) is just 0.19_{-0.09}^{+0.13}x that at z~3.8 (or
0.19_{-0.10}^{+0.15}x including cosmic variance). However, if none of our
sources is at z~10, this ratio has a 1 sigma upper limit of 0.07. (abridged)Comment: 13 pages, 3 figures, 2 tables, accepted for publication in the
Astrophysical Journal Letter
The Pairwise Peculiar Velocity Dispersion of Galaxies: Effects of the Infall
We study the reliability of the reconstruction method which uses a modelling
of the redshift distortions of the two-point correlation function to estimate
the pairwise peculiar velocity dispersion of galaxies. In particular, the
dependence of this quantity on different models for the infall velocity is
examined for the Las Campanas Redshift Survey. We make extensive use of
numerical simulations and of mock catalogs derived from them to discuss the
effect of a self-similar infall model, of zero infall, and of the real infall
taken from the simulation. The implications for two recent discrepant
determinations of the pairwise velocity dispersion for this survey are
discussed.Comment: minor changes in the discussion; accepted for publication in ApJ; 8
pages with 2 figures include
Calibrating the Galaxy Halo - Black Hole Relation Based on the Clustering of Quasars
The observed number counts of quasars may be explained either by long-lived
activity within rare massive hosts, or by short-lived activity within smaller,
more common hosts. It has been argued that quasar lifetimes may therefore be
inferred from their clustering length, which determines the typical mass of the
quasar host. Here we point out that the relationship between the mass of the
black-hole and the circular velocity of its host dark-matter halo is more
fundamental to the determination of the clustering length. In particular, the
clustering length observed in the 2dF quasar redshift survey is consistent with
the galactic halo - black-hole relation observed in local galaxies, provided
that quasars shine at ~10-100% of their Eddington luminosity. The slow
evolution of the clustering length with redshift inferred in the 2dF quasar
survey favors a black-hole mass whose redshift-independent scaling is with halo
circular velocity, rather than halo mass. These results are independent from
observations of the number counts of bright quasars which may be used to
determine the quasar lifetime and its dependence on redshift. We show that if
quasar activity results from galaxy mergers, then the number counts of quasars
imply an episodic quasar lifetime that is set by the dynamical time of the host
galaxy rather than by the Salpeter time. Our results imply that as the redshift
increases, the central black-holes comprise a larger fraction of their host
galaxy mass and the quasar lifetime gets shorter.Comment: 10 pages, 5 figures. Submitted to Ap
- …
