187 research outputs found

    Review of Journal of Cardiovascular Magnetic Resonance 2015

    Get PDF
    There were 116 articles published in the Journal of Cardiovascular Magnetic Resonance (JCMR) in 2015, which is a 14 % increase on the 102 articles published in 2014. The quality of the submissions continues to increase. The 2015 JCMR Impact Factor (which is published in June 2016) rose to 5.75 from 4.72 for 2014 (as published in June 2015), which is the highest impact factor ever recorded for JCMR. The 2015 impact factor means that the JCMR papers that were published in 2013 and 2014 were cited on average 5.75 times in 2015. The impact factor undergoes natural variation according to citation rates of papers in the 2 years following publication, and is significantly influenced by highly cited papers such as official reports. However, the progress of the journal's impact over the last 5 years has been impressive. Our acceptance rate is <25 % and has been falling because the number of articles being submitted has been increasing. In accordance with Open-Access publishing, the JCMR articles go on-line as they are accepted with no collating of the articles into sections or special thematic issues. For this reason, the Editors have felt that it is useful once per calendar year to summarize the papers for the readership into broad areas of interest or theme, so that areas of interest can be reviewed in a single article in relation to each other and other recent JCMR articles. The papers are presented in broad themes and set in context with related literature and previously published JCMR papers to guide continuity of thought in the journal. We hope that you find the open-access system increases wider reading and citation of your papers, and that you will continue to send your quality papers to JCMR for publication

    Personalised external aortic root support (PEARS) in Marfan syndrome: Analysis of 1-9 year outcomes by intention-to-treat in a cohort of the first 30 consecutive patients to receive a novel tissue and valve-conserving procedure, compared with the published results of aortic root replacement

    Get PDF
    Objective: Among people with Marfan syndrome who have a typical aortic root aneurysm, dissection is a characteristic cause of premature death. To pre-empt Type A dissection, composite root replacement with a mechanical valve became the standard of care in the 1980s and 1990s. This is being superseded by valvesparing aortic root replacement to avoid lifelong anticoagulation. In 2004, a total root and valve-sparing procedure, personalised external aortic support, was introduced. We report here results among the first 30 recipients. Methods: From cross-sectional digital images, the patient's own aorta is modelled by computer aided design and a replica is made in thermoplastic by rapid prototyping. On this, a personalised support of a macroporous polymer mesh is manufactured. The mesh is positioned around the aorta, closely applied from the aortoventricular junction to beyond the brachiocephalic artery. The operation is performed with a beating heart and usually without cardiopulmonary bypass. Results: Between 2004 and 2011, 30 patients, median age 28 years (IQR 20-44) had this operation and have been prospectively followed for 1.4-8.8 years by February 2013. During a total of 133 patient-years there were no deaths or cerebrovascular, aortic or valve-related events. These early outcomes are better than published results for the more radical extirpative root replacement operations. Conclusions: The aortic valve, the root architecture, and the blood/endothelia interface are conserved. The perioperative burden is less and there has been freedom from aortic and valvular events. A prospective comparative study is planned

    Left ventricular remodeling and hypertrophy in patients with aortic stenosis:insights from cardiovascular magnetic resonance

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cardiovascular magnetic resonance (CMR) is the gold standard non-invasive method for determining left ventricular (LV) mass and volume but has not been used previously to characterise the LV remodeling response in aortic stenosis. We sought to investigate the degree and patterns of hypertrophy in aortic stenosis using CMR.</p> <p>Methods</p> <p>Patients with moderate or severe aortic stenosis, normal coronary arteries and no other significant valve lesions or cardiomyopathy were scanned by CMR with valve severity assessed by planimetry and velocity mapping. The extent and patterns of hypertrophy were investigated using measurements of the LV mass index, indexed LV volumes and the LV mass/volume ratio. Asymmetric forms of remodeling and hypertrophy were defined by a regional wall thickening <b>≥</b>13 mm and >1.5-fold the thickness of the opposing myocardial segment.</p> <p>Results</p> <p>Ninety-one patients (61±21 years; 57 male) with aortic stenosis (aortic valve area 0.93±0.32cm2) were recruited. The severity of aortic stenosis was unrelated to the degree (r<sup>2</sup>=0.012, P=0.43) and pattern (P=0.22) of hypertrophy. By univariate analysis, only male sex demonstrated an association with LV mass index (P=0.02). Six patterns of LV adaption were observed: normal ventricular geometry (n=11), concentric remodeling (n=11), asymmetric remodeling (n=11), concentric hypertrophy (n=34), asymmetric hypertrophy (n=14) and LV decompensation (n=10). Asymmetric patterns displayed considerable overlap in appearances (wall thickness 17±2mm) with hypertrophic cardiomyopathy.</p> <p>Conclusions</p> <p>We have demonstrated that in patients with moderate and severe aortic stenosis, the pattern of LV adaption and degree of hypertrophy do not closely correlate with the severity of valve narrowing and that asymmetric patterns of wall thickening are common.</p> <p>Trial registration</p> <p>ClinicalTrials.gov Reference Number: NCT00930735</p

    Cardiovascular magnetic resonance in pulmonary hypertension

    Get PDF
    Pulmonary hypertension represents a group of conditions characterized by higher than normal pulmonary artery pressures. Despite improved treatments, outcomes in many instances remain poor. In recent years, there has been growing interest in the use of Cardiovascular Magnetic Resonance (CMR) in patients with pulmonary hypertension. This technique offers certain advantages over other imaging modalities since it is well suited to the assessment of the right ventricle and the proximal pulmonary arteries. Reflecting the relatively sparse evidence supporting its use, CMR is not routinely recommended for patients with pulmonary hypertension. However, it is particularly useful in patient with pulmonary arterial hypertension associated with congenital heart disease. Furthermore, it has proven informative in a number of ways; illustrating how right ventricular remodeling is favorably reversed by drug therapies and providing explicit confirmation of the importance of the right ventricle to clinical outcome. This review will discuss these aspects and practical considerations before speculating on future applications

    Change of nullity of a graph under two operations

    Get PDF
    Two adjacent or non-adjacent vertices of a graph G are said to be identified, if they are combined to form one vertex whose neighbor is the union of their neighborhoods (ignoring any loops or multiple edges formed). The nullity of a graph G, denoted by η(G), is the multiplicity of the eigenvalue zero in its spectrum. A graph is a nullity critical if identifying any pair of vertices decreases or increases the nullity. On the other hand, a graph is a nullity- stable if identifying any pair of distinct vertices leaves the nullity unchanged. It is proved that in general, identifying any pair of distinct vertices cannot increase or decrease the nullity by at most 2. Also, nut graphs are constructed from old ones with smaller order and larger maximum degree. Our main tools to obtain such results are the interlacing theorem, the end vertex Lemma, the assignment of appropriate weights to the vertices which are going to be identified in a high zero sum weighting of the graph. The distance between vertices with the same weight plays an important role in the study of the change in the nullity on vertex identification in a graph

    Histology of a Marfan aorta four and a half years after personalised external aortic mesh support (PEARS)

    Get PDF
    In 2008 a 26 year old man had personalised external aortic root support (PEARS) with a macroporous mesh. He was the 16th of 46 patients to have this operation. He had a typical Marfan habitus. His mother died of this disease as did his brother, with an aortic dissection. The patient himself died suddenly four and a half years after his PEARS operation. At autopsy there was no blood in the pericardium. The coronary orifices and proximal arteries were normal. His bicuspid aortic valve was minimally regurgitant as it was prior to operation and remained throughout follow-up. Macroscopically the implanted mesh was embedded in the adventitia and not separable from the aortic wall. Microscopically it was fully incorporated with collagen fibres as has been seen in our animal studies. The unsupported aortic arch showed some focal fragmentation of elastic fibres and a mild increase in mucopolysaccharides consistent with Marfan syndrome. These appearances were not present in the supported aortic root which had the histological appearance of normal aorta. He was the first patient to die with an implant. The histological appearances suggest the possibility that the incorporated support of the aortic root allowed recovery of the microstructure of the media

    Rapid automatic segmentation of abnormal tissue in late gadolinium enhancement cardiovascular magnetic resonance images for improved management of long-standing persistent atrial fibrillation

    Get PDF
    Background: Atrial fibrillation (AF) is the most common heart rhythm disorder. In order for late Gd enhancement cardiovascular magnetic resonance (LGE CMR) to ameliorate the AF management, the ready availability of the accurate enhancement segmentation is required. However, the computer-aided segmentation of enhancement in LGE CMR of AF is still an open question. Additionally, the number of centres that have reported successful application of LGE CMR to guide clinical AF strategies remains low, while the debate on LGE CMR’s diagnostic ability for AF still holds. The aim of this study is to propose a method that reliably distinguishes enhanced (abnormal) from non-enhanced (healthy) tissue within the left atrial wall of (pre-ablation and 3 months post-ablation) LGE CMR data-sets from long-standing persistent AF patients studied at our centre. Methods: Enhancement segmentation was achieved by employing thresholds benchmarked against the statistics of the whole left atrial blood-pool (LABP). The test-set cross-validation mechanism was applied to determine the input feature representation and algorithm that best predict enhancement threshold levels. Results: Global normalized intensity threshold levels T PRE = 1 1/4 and T POST = 1 5/8 were found to segment enhancement in data-sets acquired pre-ablation and at 3 months post-ablation, respectively. The segmentation results were corroborated by using visual inspection of LGE CMR brightness levels and one endocardial bipolar voltage map. The measured extent of pre-ablation fibrosis fell within the normal range for the specific arrhythmia phenotype. 3D volume renderings of segmented post-ablation enhancement emulated the expected ablation lesion patterns. By comparing our technique with other related approaches that proposed different threshold levels (although they also relied on reference regions from within the LABP) for segmenting enhancement in LGE CMR data-sets of AF patients, we illustrated that the cut-off levels employed by other centres may not be usable for clinical studies performed in our centre. Conclusions: The proposed technique has great potential for successful employment in the AF management within our centre. It provides a highly desirable validation of the LGE CMR technique for AF studies. Inter-centre differences in the CMR acquisition protocol and image analysis strategy inevitably impede the selection of a universally optimal algorithm for segmentation of enhancement in AF studies
    corecore