1,162 research outputs found
Observation of the TeV gamma-ray source MGRO J1908+06 with ARGO-YBJ
The extended gamma ray source MGRO J1908+06, discovered by the Milagro air
shower detector in 2007, has been observed for about 4 years by the ARGO-YBJ
experiment at TeV energies, with a statistical significance of 6.2 standard
deviations. The peak of the signal is found at a position consistent with the
pulsar PSR J1907+0602. Parametrizing the source shape with a two-dimensional
Gauss function we estimate an extension \sigma = 0.49 \pm 0.22 degrees,
consistent with a previous measurement by the Cherenkov Array H.E.S.S.. The
observed energy spectrum is dN/dE = 6.1 \pm 1.4 \times 10^-13 (E/4 TeV)^{-2.54
\pm 0.36} photons cm^-2 s^-1 TeV^-1, in the energy range 1-20 TeV. The measured
gamma ray flux is consistent with the results of the Milagro detector, but is
2-3 times larger than the flux previously derived by H.E.S.S. at energies of a
few TeV. The continuity of the Milagro and ARGO-YBJ observations and the stable
excess rate observed by ARGO-YBJ along 4 years of data taking support the
identification of MGRO J1908+06 as the steady powerful TeV pulsar wind nebula
of PSR J1907+0602, with an integrated luminosity above 1 TeV about 1.8 times
the Crab Nebula luminosity.Comment: 6 pages, accepted for pubblication by ApJ. Replaced to correct the
author lis
An empirical analysis of organized crime, corruption and economic growth
In a companion study, Blackburn et al. (Econ Theory Bull, 2017), we have developed a theoretical framework for studying interactions between organized crime and corruption, with the view of examining the combined effects of these phenomena on economic growth. The analysis therein illustrates that organized crime has a negative effect on growth, but that the magnitude of the effect may be either enhanced or mitigated in the presence of corruption. In this paper we tackle the ambiguity produced by the coexistence of the two illicit activities with an empirical investigation using a panel of Italian regions for the period 1983–2009. We find that organized crime distorts growth less when it coexists with corruption and show our results to be robust to different specifications, measures of organized crime, and estimation techniques
THE ROLE OF BUTYRIC ACID AS A OPROTECTIVE AGENT AGAINST INFLAMMATORY BOWEL DISEASE
Inflammatory Bowel disease (IBD), such as Crohn's disease and ulcerative colitis, are pathologies characterized by a chronic inflammation of the gastrointestinal tract. Their etiopathogenesis is not yet fully understood. Immune system and heat shock proteins (HSPs) dysfunctions are considered to be among the most likely causes of these diseases. Butyrate is a short-chain fatty acid produced by intestinal microflora. It has a trophic, benefical and protective role in the colonic mucosa, and it also induces changes in Hsp levels and localization. It may therefore be a valuable complementary therapeutic agent when used alongside trraditional drugs (mesalazine and corticosteroids) to treat the production of butyrate in the endoluminal environment may promote clinical remission in IBD patients. Due to these characteristics, there has been keen interest in the use of butyrate as a novel therapeutic supplement in the recent years. The current findings need to be validated through further clinical trials to better define the bbiomolecular dynamics of butyrate in the colonocytes of IBD patients
LOFT - a Large Observatory For x-ray Timing
The high time resolution observations of the X-ray sky hold the key to a
number of diagnostics of fundamental physics, some of which are unaccessible to
other types of investigations, such as those based on imaging and spectroscopy.
Revealing strong gravitational field effects, measuring the mass and spin of
black holes and the equation of state of ultradense matter are among the goals
of such observations. At present prospects for future, non-focused X-ray timing
experiments following the exciting age of RXTE/PCA are uncertain. Technological
limitations are unavoidably faced in the conception and development of
experiments with effective area of several square meters, as needed in order to
meet the scientific requirements. We are developing large-area monolithic
Silicon Drift Detectors offering high time and energy resolution at room
temperature, which require modest resources and operation complexity (e.g.,
read-out) per unit area. Based on the properties of the detector and read-out
electronics that we measured in the lab, we developed a realistic concept for a
very large effective area mission devoted to X-ray timing in the 2-30 keV
energy range. We show that effective areas in the range of 10-15 square meters
are within reach, by using a conventional spacecraft platform and launcher of
the small-medium class.Comment: 13 pages, 8 figures, 1 table, Proceedings of SPIE Vol. 7732, Paper
No. 7732-66, 201
Discovery of extreme particle acceleration in the microquasar Cygnus X-3
The study of relativistic particle acceleration is a major topic of
high-energy astrophysics. It is well known that massive black holes in active
galaxies can release a substantial fraction of their accretion power into
energetic particles, producing gamma-rays and relativistic jets. Galactic
microquasars (hosting a compact star of 1-10 solar masses which accretes matter
from a binary companion) also produce relativistic jets. However, no direct
evidence of particle acceleration above GeV energies has ever been obtained in
microquasar ejections, leaving open the issue of the occurrence and timing of
extreme matter energization during jet formation. Here we report the detection
of transient gamma-ray emission above 100 MeV from the microquasar Cygnus X-3,
an exceptional X-ray binary which sporadically produces powerful radio jets.
Four gamma-ray flares (each lasting 1-2 days) were detected by the AGILE
satellite simultaneously with special spectral states of Cygnus X-3 during the
period mid-2007/mid-2009. Our observations show that very efficient particle
acceleration and gamma-ray propagation out of the inner disk of a microquasar
usually occur a few days before major relativistic jet ejections. Flaring
particle energies can be thousands of times larger than previously detected
maximum values (with Lorentz factors of 105 and 102 for electrons and protons,
respectively). We show that the transitional nature of gamma-ray flares and
particle acceleration above GeV energies in Cygnus X-3 is clearly linked to
special radio/X-ray states preceding strong radio flares. Thus gamma-rays
provide unique insight into the nature of physical processes in microquasars.Comment: 29 pages (including Supplementary Information), 8 figures, 2 tables
version submitted to Nature on August 7, 2009 (accepted version available at
http://www.nature.com/nature/journal/vaop/ncurrent/pdf/nature08578.pdf
Multiwavelength observations of 3C 454.3 II. The AGILE 2007 December campaign
We report on the second AGILE multiwavelength campaign of the blazar 3C 454.3
during the first half of December 2007. This campaign involved AGILE, Spitzer,
Swift,Suzaku,the WEBT consortium,the REM and MITSuME telescopes,offering a
broad band coverage that allowed for a simultaneous sampling of the synchrotron
and inverse Compton (IC) emissions.The 2-week AGILE monitoring was accompanied
by radio to optical monitoring by WEBT and REM and by sparse observations in
mid-Infrared and soft/hard X-ray energy bands performed by means of Target of
Opportunity observations by Spitzer, Swift and Suzaku, respectively.The source
was detected with an average flux of~250x10^{-8}ph cm^-2s^-1 above 100
MeV,typical of its flaring states.The simultaneous optical and gamma-ray
monitoring allowed us to study the time-lag associated with the variability in
the two energy bands, resulting in a possible ~1-day delay of the gamma-ray
emission with respect to the optical one. From the simultaneous optical and
gamma-ray fast flare detected on December 12, we can constrain the delay
between the gamma-ray and optical emissions within 12 hours. Moreover, we
obtain three Spectral Energy Distributions (SEDs) with simultaneous data for
2007 December 5, 13, 15, characterized by the widest multifrequency coverage.
We found that a model with an external Compton on seed photons by a standard
disk and reprocessed by the Broad Line Regions does not describe in a
satisfactory way the SEDs of 2007 December 5, 13 and 15. An additional
contribution, possibly from the hot corona with T=10^6 K surrounding the jet,
is required to account simultaneously for the softness of the synchrotron and
the hardness of the inverse Compton emissions during those epochs.Comment: 13 pages, 8 figures, 2 tables, Accepted for publication in Ap
Fermi LAT observations of cosmic-ray electrons from 7 GeV to 1 TeV
We present the results of our analysis of cosmic-ray electrons using about 8
million electron candidates detected in the first 12 months on-orbit by the
Fermi Large Area Telescope. This work extends our previously-published
cosmic-ray electron spectrum down to 7 GeV, giving a spectral range of
approximately 2.5 decades up to 1 TeV. We describe in detail the analysis and
its validation using beam-test and on-orbit data. In addition, we describe the
spectrum measured via a subset of events selected for the best energy
resolution as a cross-check on the measurement using the full event sample. Our
electron spectrum can be described with a power law with no prominent spectral features within systematic uncertainties.
Within the limits of our uncertainties, we can accommodate a slight spectral
hardening at around 100 GeV and a slight softening above 500 GeV.Comment: 20 pages, 23 figures, 2 tables, published in Physical Review D 82,
092004 (2010) - contact authors: C. Sgro', A. Moisee
- …
