46 research outputs found

    Lymphangiogenesis and Lymphatic Remodeling Induced by Filarial Parasites: Implications for Pathogenesis

    Get PDF
    Even in the absence of an adaptive immune system in murine models, lymphatic dilatation and dysfunction occur in filarial infections, although severe irreversible lymphedema and elephantiasis appears to require an intact adaptive immune response in human infections. To address how filarial parasites and their antigens influence the lymphatics directly, human lymphatic endothelial cells were exposed to filarial antigens, live parasites, or infected patient serum. Live filarial parasites or filarial antigens induced both significant LEC proliferation and differentiation into tube-like structures in vitro. Moreover, serum from patently infected (microfilaria positive) patients and those with longstanding chronic lymphatic obstruction induced significantly increased LEC proliferation compared to sera from uninfected individuals. Differentiation of LEC into tube-like networks was found to be associated with significantly increased levels of matrix metalloproteases and inhibition of their TIMP inhibitors (Tissue inhibitors of matrix metalloproteases). Comparison of global gene expression induced by live parasites in LEC to parasite-unexposed LEC demonstrated that filarial parasites altered the expression of those genes involved in cellular organization and development as well as those associated with junction adherence pathways that in turn decreased trans-endothelial transport as assessed by FITC-Dextran. The data suggest that filarial parasites directly induce lymphangiogenesis and lymphatic differentiation and provide insight into the mechanisms underlying the pathology seen in lymphatic filariasis

    A possible relationship between Thromboxane B2 and Leukotriene B4 and the encapsulation of Dirofilaria repens worms in human subcutaneous dirofilariasis

    No full text
    Human subcutaneous dirofilariosis has several clinical presentations. Many cases present as subcutaneous nodules, as a consequence of a local inflammatory reaction that encapsulates and destroys the worms. In addition, there are cases in which migrating worms located in the ocular area remain unencapsulated. In the present work, the levels of two pro-inflammatory eicosanoids, thromboxane B2 (TxB2) and leukotriene B4 (LTB4) are analysed by commercial Enzime-Linked immunosorbent assay (ELISA) in serum samples from 43 individuals, 28 diagnosed as having subcutaneous dirofilariasis presenting a subcutaneous nodule, five diagnosed as having dirofilariasis, in which the worms remained unencapsulated in the periphery of the eye, and ten healthy individuals living in a non-endemic area, used as controls. The worms were surgically removed, identifying Dirofilaria repens as the causative agent in all cases, by Polymerase Chain Reaction (PCR). Individuals with nodules showed significantly higher levels of TxB2 and LTB4 than healthy controls, whereas significant differences in LTB4 levels were observed between individuals with unencapsulated worms and healthy controls. It is speculated that the absence of LTB4 may contribute to the fact that worms remain unencapsulated as a part of immune evasion mechanisms.0,6492,17Q1Q2SCI

    Security challenges in the IP-based internet of things

    No full text
    A direct interpretation of the term Internet of Things refers to the use of standard Internet protocols for the human-to-thing or thing-to-thing communication in embedded networks. Although the security needs are well-recognized in this domain, it is still not fully understood how existing IP security protocols and architectures can be deployed. In this paper, we discuss the applicability and limitations of existing Internet protocols and security architectures in the context of the Internet of Things. First, we give an overview of the deployment model and general security needs. We then present challenges and requirements for IP-based security solutions and highlight specific technical limitations of standard IP security protocols

    Zoonotic dirofilariases: one, no one, or more than one parasite

    No full text
    Dirofilaria spp. are vector-borne filarial nematodes that affect a variety of animal species, including humans. Dirofilaria immitis and Dirofilaria repens are the two main zoonotic species, but also other wildlife-associated Dirofilaria species are occasionally reported as causative agents of human dirofilariasis, including Dirofilaria striata, Dirofilaria tenuis, Dirofilaria ursi, Dirofilaria spectans, and Dirofilaria magnilarvata. Since the etiological identity of most of the species mentioned here is arguable, we summarized and critically discussed data concerning infections in humans, focusing on the reliability of Dirofilaria species identification. We advocate the importance of combined morphological and genomic approaches to provide unequivocal evidence for their zoonotic potential and pathogenicity

    Specific IgG antibody response against antigens of Dirofilaria immitis and its Wolbachia endosymbiont bacterium in cats with natural and experimental infections.

    No full text
    Sera from three groups of cats under different experimental conditions were studied by ELISA to assess the host's immune response against synthetic peptides derived from Dirofilaria immitis (Dipp) and against the surface protein of its endosymbiont, Wolbachia (WSPr). In experimentally infected cats (Group 1), an increase of IgG antibody against both Dipp and WSPr was observed from 2 months post-infection until the end of the study, 6 months post-infection. In experimentally infected cats, treated against infective larvae (Group 2), anti-Dipp IgG decreased dramatically from 4 months post-infection (3 months post treatment), showing very low values till the end of the study (6.5 months from infection, 5.5 months from treatment), while anti-WSP IgG increased constantly till the end of the study. Of 49 outdoor, asymptomatic cats exposed to a high risk of natural infection (Group 3), 9 were positive for anti-Dipp IgG and for a validated, in-clinic commercial antibody diagnostic kit for cats. Two cats were also found positive for circulating antigens of adult female worm. Anti-WSPr IgG were found in five of nine anti-Dipp IgG-positive sera and from eight ELISADipp-negative sera. Our results confirm the strong IgG response in heartworm infected cats and demonstrate the involvement of the Wolbachia endosymbiont in the immune reaction to the parasite both in experimentally infected cats and in cats exposed to a high risk of natural infection

    Ribosomal DNA second internal transcribed spacer sequence studies of Culicid vectors from an endemic area of Dirofilaria immitis in Western Spain

    No full text
    Studies were performed in an endemic area of Dirofilaria immitis in Spain to genetically characterize the potential mosquito vector species present by means of DNA sequencing and elucidate which of these species may be involved in the transmission. The rDNA ITS-2 sequences of two Culex pipiens haplotypes, H1 and H2, Aedes (Aedimorphus) vexans, Fredwardsius vittatus, Ochlerotatus (Ochlerotatus) caspius, Anopheles (Anopheles) atroparvus, and Anopheles (Anopheles) plumbeus were obtained. F. vittatus and An. plumbeus were detected for the first time. Results on abundance, presence, and activity suggest that the month of August is the period of higher transmission risk, with C. pipiens, Ae. vexans, and An. atroparvus present simultaneously. Population studies indicate that C. pipiens may be considered the most important potential vector, while Ae. vexans, An. atroparvus, and O. caspius being involved in transmission only sporadically. The absence of larval dirofilarial infection agrees with the very low prevalences known in endemic areas
    corecore