19,043 research outputs found
Thermodynamic properties and phase diagrams of spin-1 quantum Ising systems with three-spin interactions
The spin-1 quantum Ising systems with three-spin interactions on
two-dimensional triangular lattices are studied by mean-field method. The
thermal variations of order parameters and phase diagrams are investigated in
detail. The stable, metastable and unstable branches of the order parameters
are obtained. According to the stable conditions at critical point, we find
that the systems exhibit tricritical points. With crystal field and biquadratic
interactions, the system has rich phase diagrams with single reentrant or
double reentrant phase transitions for appropriate ranges of the both
parameters.Comment: 10 pages, 5 figure
Use of low-energy hydrogen ion implants in high-efficiency crystalline-silicon solar cells
The use of low-energy hydrogen implants in the fabrication of high-efficiency crystalline silicon solar cells was investigated. Low-energy hydrogen implants result in hydrogen-caused effects in all three regions of a solar cell: emitter, space charge region, and base. In web, Czochralski (Cz), and floating zone (Fz) material, low-energy hydrogen implants reduced surface recombination velocity. In all three, the implants passivated the space charge region recombination centers. It was established that hydrogen implants can alter the diffusion properties of ion-implanted boron in silicon, but not ion-implated arsenic
Non-Abelian Proca model based on the improved BFT formalism
We present the newly improved Batalin-Fradkin-Tyutin (BFT) Hamiltonian
formalism and the generalization to the Lagrangian formulation, which provide
the much more simple and transparent insight to the usual BFT method, with
application to the non-Abelian Proca model which has been an difficult problem
in the usual BFT method. The infinite terms of the effectively first class
constraints can be made to be the regular power series forms by ingenious
choice of and -matrices. In this new
method, the first class Hamiltonian, which also needs infinite correction terms
is obtained simply by replacing the original variables in the original
Hamiltonian with the BFT physical variables. Remarkably all the infinite
correction terms can be expressed in the compact exponential form. We also show
that in our model the Poisson brackets of the BFT physical variables in the
extended phase space are the same structure as the Dirac brackets of the
original phase space variables. With the help of both our newly developed
Lagrangian formulation and Hamilton's equations of motion, we obtain the
desired classical Lagrangian corresponding to the first class Hamiltonian which
can be reduced to the generalized St\"uckelberg Lagrangian which is non-trivial
conjecture in our infinitely many terms involved in Hamiltonian and Lagrangian.Comment: Notable improvements in Sec. I
Cation mono- and co-doped anatase TiO nanotubes: An {\em ab initio} investigation of electronic and optical properties
The structural, electronic, and optical properties of metal (Si, Ge, Sn, and
Pb) mono- and co-doped anatase TiO nanotubes are investigated, in order
to elucidate their potential for photocatalytic applications. It is found that
Si doped TiO nanotubes are more stable than those doped with Ge, Sn, or
Pb. All dopants lower the band gap, except the (Ge, Sn) co-doped structure, the
decrease depending on the concentration and the type of dopant.
Correspondingly, a redshift in the optical properties for all kinds of dopings
is obtained. Even though a Pb mono- and co-doped TiO nanotube has the
lowest band gap, these systems are not suitable for water splitting, due to the
location of the conduction band edges, in contrast to Si, Ge, and Sn mono-doped
TiO nanotubes. On the other hand, co-doping of TiO does not improve
its photocatalytic properties. Our findings are consistent with recent
experiments which show an enhancement of light absorption for Si and Sn doped
TiO nanotubes.Comment: revised and updated, 23 pages (preprint style), 7 figures, 5 table
AMPHIBIAN DISTRIBUTION IN THE GEORGIA SEA ISLANDS: IMPLICATIONS FROM THE PAST AND FOR THE FUTURE
We summarized amphibian distributions for 12 coastal islands in Georgia, USA. Occurrence among islands was correlated with life history traits, habitats, island size, distance to other islands, and island geological age. Species’ distributions were determined from published literature. Island sizes and vegetation types were derived from 2011 Georgia Department of Natural Resources habitat maps, which included both federal and state vegetation classification systems. Species occurring on more islands tended to have greater total reproductive output (i.e., life span >4 years, and annual egg production >1,000 eggs) and adults had tolerance of brackish environs. Larger islands had greater area of freshwater wetlands, predominantly short hydroperiod (<6 months). Species tied to long hydroperiod wetlands (>6 months) were more restricted in their distribution across islands. Overall, larger islands supported more species, but the correlation was weaker for geologically younger Holocene islands (age <11,000 years). While Euclidean distance between islands does not necessarily preclude inter-island dispersal, inhospitable habitat for amphibians (brackish tidal marshes and creeks interspersed with wide rivers) suggests that inter-island dispersal is very limited. The paucity of recent occurrence data for amphibians in this dynamic coastal region, let alone standardized annual monitoring data, hinders efforts to model species’ vulnerability in a region susceptible to sea level rise and development pressure. The most common survey method, standardized amphibian vocal surveys, will detect Anuran reproductive efforts, but is unlikely to ascertain if breeding was successful or to detect salamanders. While it will not replace actual population data, consideration of critical life-history traits and breeding habitat availability can be used to direct management to support long-term species persistence in changing environs. Even common amphibians in coastal conservation areas of Georgia are vulnerable to increasing population isolation caused by unsuitable habitat
Electron-impact excitation and dissociation processes in H2
The electron-impact excitation and dissociation cross sections for the C 1Πu, c 3Πu, B′ 1Σu+, and E(F) 1Σg+ states of H2 have been calculated within the distorted-wave approximation. The distorted waves are obtained as solutions of the static-exchange potential field of the ground electronic state. Both differential and integral inelastic cross sections are reported and compared with other calculated results and available experimental data
BRST Quantization of the Proca Model based on the BFT and the BFV Formalism
The BRST quantization of the Abelian Proca model is performed using the
Batalin-Fradkin-Tyutin and the Batalin-Fradkin-Vilkovisky formalism. First, the
BFT Hamiltonian method is applied in order to systematically convert a second
class constraint system of the model into an effectively first class one by
introducing new fields. In finding the involutive Hamiltonian we adopt a new
approach which is more simpler than the usual one. We also show that in our
model the Dirac brackets of the phase space variables in the original second
class constraint system are exactly the same as the Poisson brackets of the
corresponding modified fields in the extended phase space due to the linear
character of the constraints comparing the Dirac or Faddeev-Jackiw formalisms.
Then, according to the BFV formalism we obtain that the desired resulting
Lagrangian preserving BRST symmetry in the standard local gauge fixing
procedure naturally includes the St\"uckelberg scalar related to the explicit
gauge symmetry breaking effect due to the presence of the mass term. We also
analyze the nonstandard nonlocal gauge fixing procedure.Comment: 29 pages, plain Latex, To be published in Int. J. Mod. Phys.
Superconductivity induced by doping Platinum in BaFe2As2
By substituting Fe with the 5d-transition metal Pt in BaFe2As2, we have
successfully synthesized the superconductors BaFe2-xPtxAs2. The systematic
evolution of the lattice constants indicates that the Fe ions were successfully
replaced by Pt ions. By increasing the doping content of Pt, the
antiferromagnetic order and structural transition of the parent phase is
suppressed and superconductivity emerges at a doping level of about x = 0.02.
At a doping level of x = 0.1, we get a maximum transition temperature Tc of
about 25 K. The synchrotron powder x-ray diffraction shows that the resistivity
anomaly is in good agreement with the structural transition. The
superconducting transitions at different magnetic fields were also measured at
the doping level of about x = 0.1, yielding a slope of -dHc2/dT = 5.4 T/K near
Tc. A phase diagram was established for the Pt doped 122 system. Our results
suggest that superconductivity can also be easily induced in the FeAs family by
substituting the Fe with Pt, with almost the similar maximum transition
temperatures as doping Ni, Co, Rh and Ir.Comment: 6 pages, 5 figure
- …
