1,230 research outputs found

    Highly Ionised Gas as a Diagnostic of the Inner NLR

    Full text link
    The spectra of AGN from the ultraviolet to the near infrared, exhibit emission lines covering a wide range of ionisation states, from neutral species such as [O I] 6300A, up to [Fe XIV] 5303A. Here we report on some recent studies of the properties of highly ionised lines (HILs), plus two case studies of individual objects. Future IFU observations at high spatial and good spectral resolution, will probe the excitation and kinematics of the gas in the zone between the extended NLR and unresolved BLR. Multi-component SED fitting can be used to link the source of photoionisation with the strengths and ratios of the HILs.Comment: Proceedings of the IAU Symposium: Co-evolution of Central Black Holes and Galaxie

    Creating Inclusive Learning Communities for ELL Students: Transforming School Principals\u27 Perspectives

    Get PDF
    School-level administrators are often concerned about tertiary supports for English language learners (ELLs), such as translating signs and school documents or offering Spanish classes for their teachers. Although modeling and learning the heritage language(s) of the ESL population can be helpful, its focus on language differences can limit our considerations of broader systemic challenges that impact the success of ELLs in our schools. This article shares the dialogues that school administrators are having about ELL students and discusses the use of social justice and equity focused professional learning communities as a way to transform this discourse to address the broader systemic inequities facing our ELL students. The authors share their insight from their work with administrators as they transform from talking about surface level issues they encounter in their work with ELL students, to deeper discourse about relations of power in schools

    An enhanced fraction of starbursting galaxies among high Eddington ratio AGNs

    Get PDF
    We investigate the star-forming properties of 1620 X-ray selected active galactic nuclei (AGN) host galaxies as a function of their specific X-ray luminosity (i.e. X-ray luminosity per unit host stellar mass) – a proxy of the Eddington ratio. Our motivation is to determine whether there is any evidence of a suppression of star formation at high Eddington ratios, which may hint towards ‘AGN feedback’ effects. Star formation rates (SFRs) are derived from fits to Herschel-measured far-infrared spectral energy distributions, taking into account any contamination from the AGN. Herschel-undetected AGNs are included via stacking analyses to provide average SFRs in bins of redshift and specific X-ray luminosity (spanning 0.01≲LX/M∗≲100L⊙M−1. After normalizing for the effects of mass and redshift arising from the evolving galaxy main sequence, we find that the SFRs of high specific luminosity AGNs are slightly enhanced compared to their lower specific luminosity counterparts. This suggests that the SFR distribution of AGN hosts changes with specific X-ray luminosity, a result reinforced by our finding of a significantly higher fraction of starbursting hosts among high specific luminosity AGNs compared to that of the general star-forming galaxy population (i.e. 8–10 per cent versus 3 per cent). Contrary to our original motivation, our findings suggest that high specific luminosity AGNs are more likely to reside in galaxies with enhanced levels of star formation

    Modeling the connection between ultraviolet and infrared galaxy populations across cosmic times

    Get PDF
    Using a phenomenological approach, we self-consistently model the redshift evolution of the ultraviolet (UV) and infrared (IR) luminosity functions across cosmic time, as well as a range of observed IR properties of UV-selected galaxy population. This model is an extension of the 2SFM (2 star-formation modes) formalism, which is based on the observed "main-sequence" of star-forming galaxies, i.e. a strong correlation between their stellar mass and their star formation rate (SFR), and a secondary population of starbursts with an excess of star formation. The balance between the UV light from young, massive stars and the dust-reprocessed IR emission is modeled following the empirical relation between the attenuation (IRX for IR excess hereafter) and the stellar mass, assuming a scatter of 0.4\,dex around this relation. We obtain a good overall agreement with the measurements of the IR luminosity function up to z~3 and the UV luminosity functions up to z~6, and show that a scatter on the IRX-M relation is mandatory to reproduce these observables. We also naturally reproduce the observed, flat relation between the mean IRX and the UV luminosity at LUV>109.5 L⊙. Finally, we perform predictions of the UV properties and detectability of IR-selected samples and the vice versa, and discuss the results in the context of the UV-rest-frame and sub-millimeter surveys of the next decade

    A tidal disruption event in the nearby ultra-luminous infrared galaxy F01004-2237

    Get PDF
    Tidal disruption events (TDEs), in which stars are gravitationally disrupted as they pass close to the supermassive black holes in the centres of galaxies, are potentially important probes of strong gravity and accretion physics. Most TDEs have been discovered in large-area monitoring surveys of many 1000s of galaxies, and the rate deduced for such events is relatively low: one event every 104^4 - 105^5 years per galaxy. However, given the selection effects inherent in such surveys, considerable uncertainties remain about the conditions that favour TDEs. Here we report the detection of unusually strong and broad helium emission lines following a luminous optical flare (Mv < -20.1 mag) in the nucleus of the nearby ultra-luminous infrared galaxy F01004-2237. The particular combination of variability and post-flare emission line spectrum observed in F01004-2237 is unlike any known supernova or active galactic nucleus. Therefore, the most plausible explanation for this phenomenon is a TDE -- the first detected in a galaxy with an ongoing massive starburst. The fact that this event has been detected in repeat spectroscopic observations of a sample of 15 ultra-luminous infrared galaxies over a period of just 10 years suggests that the rate of TDEs is much higher in such objects than in the general galaxy population.Comment: 17 pages, 4 figures, accepted for publication in Nature Astronom

    Characterizing the far-infrared properties of distant X-ray detected AGNs: evidence for evolution in the infrared–X-ray luminosity ratio

    Get PDF
    We investigate the far-infrared (FIR) properties of X-ray sources detected in the Chandra Deep Field-South (CDF-S) survey using the ultradeep 70 and 24 μm Spitzer observations taken in this field. Since only 30 (i.e. ≈ 10 per cent) of the 266 X-ray sources in the region of the 70 μm observations are detected at 70 μm, we rely on stacking analyses of the 70 μm data to characterize the average 70 μm properties of the X-ray sources as a function of redshift, X-ray luminosity and X-ray absorption. Using Spitzer-IRS data of the Swift-Burst Alert Telescope (BAT) sample of z ≈ 0 active galactic nuclei (AGNs), we show that the 70/24 μm flux ratio can distinguish between AGN-dominated and starburst-dominated systems out to z ≈ 1.5 . Among the X-ray sources detected at 70 μm, we note a large scatter in the observed 70/24 μm flux ratios, spanning almost a factor of 10 at similar redshifts, irrespective of object classification, suggesting a range of AGN:starburst ratios. From stacking analyses we find that the average observed 70/24 μm flux ratios of AGNs out to an average redshift of 1.5 are similar to z ≈ 0 AGNs with similar X-ray luminosities (L_X = 10^(42-44) erg s^(−1)) and absorbing column densities (N_H ≤ 10^(23) cm^(−2)) . Furthermore, both high-redshift and z ≈ 0 AGNs follow the same tendency towards warmer 70/24 μm colours with increasing X-ray luminosity (LX). From analyses of the Swift-BAT sample of z ≈ 0 AGNs, we note that the 70 μm flux can be used to determine the IR (8–1000 μm) luminosities of high-redshift AGNs. We use this information to show that L_X = 10^(42-43) erg s^(−1) AGNs at high redshifts (z = 1–2) have IR to X-ray luminosity ratios (L_(IR)/L_X) that are, on average, 4.7^(+10.2)_(−2.0) and 12.7+7.1−2.6 times higher than AGNs with similar X-ray luminosities at z = 0.5–1 and ≈0, respectively. By comparison, we find that the L_(IR)/L_X ratios of L_X= 10^(43-44) erg s^(−1) AGNs remain largely unchanged across this same redshift interval. We explore the consequences that these results may have on the identification of distant, potentially Compton-thick AGNs using L_(IR)/L_X ratios. In addition, we discuss possible scenarios for the observed increase in the L_(IR)/L_X ratio with redshift, including changes in the dust covering factor of AGNs and/or the star formation rates of their host galaxies. Finally, we show how deep observations to be undertaken by the Herschel Space Observatory will enable us to discriminate between these proposed scenarios and also identify Compton-thick AGNs at high redshifts

    Searching for Compton-thick active galactic nuclei at z~0.1

    Full text link
    Using a suite of X-ray, mid-IR and optical active galactic nuclei (AGN) luminosity indicators, we search for Compton-thick (CT) AGNs with intrinsic L_X>10^42erg/s at z~0.03-0.2, a region of parameter space which is currently poorly constrained by deep narrow-field and high-energy (E>10keV) all-sky X-ray surveys. We have used the widest XMM-Newton survey (the serendipitous source catalogue) to select a representative sub-sample (14; ~10%) of the 147 X-ray undetected candidate CT AGNs in the Sloan Digital Sky Survey (SDSS) with f_X/f_[OIII]<1; the 147 sources account for ~50% of the overall Type-2 AGN population in the SDSS-XMM overlap region. We use mid-IR spectral decomposition analyses and emission-line diagnostics, determined from pointed Spitzer-IRS spectroscopic observations of these candidate CT AGNs, to estimate the intrinsic AGN emission (predicted L_X,2-10keV (0.2-30)x10^42erg/s). On the basis of the optical [OIII], mid-IR [OIV] and 6um AGN continuum luminosities we conservatively find that the X-ray emission in at least 6/14 (>43%) of our sample appear to be obscured by CT material with N_H>1.5x10^24cm^-2. Under the reasonable assumption that our 14 AGNs are representative of the overall X-ray undetected AGN population in the SDSS-XMM parent sample, we find that >20% of the optical Type-2 AGN population are likely to be obscured by CT material. This implies a space-density of log(Phi) >-4.9Mpc^-3 for CT AGNs with L_X>10^42erg/s at z~0.1, which we suggest may be consistent with that predicted by X-ray background synthesis models. Furthermore, using the 6um continuum luminosity to infer the intrinsic AGN luminosity and the stellar velocity dispersion to estimate M_BH, we find that the most conservatively identified CT AGNs in this sample may harbour some of the most rapidly growing black holes (median M_BH~3x10^7M_o) in the nearby Universe, with a median Eddington ratio of ~0.2.Comment: 16 pages, 2 tables, 6 figures. Accepted for publication in MNRA

    Are the black hole masses in Narrow Line Seyfert 1 galaxies actually small?

    Full text link
    Narrow Line Seyfert 1 galaxies (NLS1s) are generally considered peculiar objects among the broad class of Type 1 active galactic nuclei, due to the relatively small width of the broad lines, strong X-ray variability, soft X-ray continua, weak [OIII], and strong FeII line intensities. The mass M_BH of the central massive black hole (MBH) is claimed to be lighter than expected from known MBH-host galaxy scaling relations, while the accretion rate onto the MBH larger than the average value appropriate to Seyfert 1 galaxies. In this Letter, we show that NLS1 peculiar M_BH and L/L_Edd turn out to be fairly standard, provided that the broad line region is allowed to have a disc-like, rather than isotropic, geometry. Assuming that NLS1s are rather ``normal'' Seyfert 1 objects seen along the disc axis, we could estimate the typical inclination angles from the fraction of Seyfert 1 classified as NLS1s, and compute the geometrical factor relating the observed FWHM of broad lines to the virial mass of the MBH. We show that the geometrical factor can fully account for the "black hole mass deficit" observed in NLS1s, and that L/L_Edd is (on average) comparable to the value of the more common broad line Seyfert 1 galaxies.Comment: 5 pages, 3 figures. Accepted for publication in MNRAS Letters. Wrong version was uploaded! Check for the correct one in the replacemen
    corecore