2,512 research outputs found
Crustal structure beneath the Trondelag Platform and adjacent areas of the Mid-Norwegian margin, as derived from wide-angle seismic and potential field data
The outer mid-Norwegian margin is characterized by strong breakup magmatism and has been extensively surveyed. The crustal structure of the inner continental shelf, however, is less studied, and its relation to the onshore geology, Caledonian structuring, and breakup magmatism remains unclear. Two Ocean Bottom Seismometer profiles were acquired across the Trøndelag Platform in 2003, as part of the Euromargins program. Additional-land stations recorded the marine shots. The P-wave data were modeled by ray-tracing, supported by gravity modeling. Older multi-channel seismic data allowed for interpretation of stratigraphy down to the top of the Triassic. Crystalline basement velocity is ~6 km s-1 onshore. Top basement is difficult to identify offshore, as velocities (5.3-5.7 km s-1) intermediate between typical crystalline crust and Mesozoic sedimentary strata appear 50-80 km from the coast. This layer thickens towards the Klakk-Ytreholmen Fault Complex and predates Permian and later structur-ing.
The velocities indicate sedimentary rocks, most likely Devonian. Onshore late- to post-Caledonian detachments have been proposed to extend offshore, based on the magnetic anomaly pattern. We do not find the expected correlation between upper basement velocity structure and detachments.
However, there is a distinct, dome-shaped lower-crustal body with a velocity of 6.6-7.0 km s-1. This is thickest under the Froan Basin, and the broad magnetic anomaly used to delineate the detachments correlates with this. The proposed offshore continuation of the detachments thus
appears- unreliable. While we find indications of high density and velocity (~7.2 km s-1) lower crust under the Rås Basin, similar to the proposed igneous underplating of the outer margin, this is poorly constrained near the end of our profiles. The gravity field indicates that this body may be continuous from the pre-breakup basement structures of the Utgard High to the Frøya High, suggesting that it could be an island arc or oceanic terrane-accreted during the Caledonian orogeny. Thus, we find no clear evidence of early Cenozoic igneous underplating of the inner part of the shelf
WHAM Observations of H-alpha Emission from High Velocity Clouds in the M, A, and C Complexes
The first observations of the recently completed Wisconsin H-Alpha Mapper
(WHAM) facility include a study of emission lines from high velocity clouds in
the M, A, and C complexes, with most of the observations on the M I cloud. We
present results including clear detections of H-alpha emission from all three
complexes with intensities ranging from 0.06 R to 0.20 R. In every observed
direction where there is significant high velocity H I gas seen in the 21 cm
line we have found associated ionized hydrogen emitting the H-alpha line. The
velocities of the H-alpha and 21 cm emission are well correlated in every case
except one, but the intensities are not correlated. There is some evidence that
the ionized gas producing the H-alpha emission envelopes the 21 cm emitting
neutral gas but the H-alpha "halo", if present, is not large. If the H-alpha
emission arises from the photoionization of the H I clouds, then the implied
Lyman continuum flux F_{LC} at the location of the clouds ranges from 1.3 to
4.2 x 10^5 photons cm^{-2} s^{-1}. If, on the other hand, the ionization is due
to a shock arising from the collision of the high-velocity gas with an ambient
medium in the halo, then the density of the pre-shocked gas can be constrained.
We have also detected the [S II] 6716 angstrom line from the M I cloud and have
evidence that the [S II] to H-alpha ratio varies with location on the cloud.Comment: 32 pages, 18 figures, to appear in ApJ (Sept. 10, 1998
Orbits of Globular Clusters in the Outer Galaxy: NGC 7006
We present a proper motion study of the distant globular cluster NGC 7006
based on the measurement of 25 photographic plates spanning a 40-year interval.
The absolute proper motion determined with respect to extragalactic objects is
(-0.96, -1.14) +- (0.35, 0.40) mas/yr. The total space velocity of NGC 7006 in
a Galactocentric rest frame is 279 km/s, placing the cluster on one of the most
energetic orbits (Ra =102 kpc) known to date for clusters within 40-kpc from
the Galactic center. We compare the orbits of four clusters that have
apocentric radii larger than 80 kpc (NGC 5466, NGC 6934, NGC 7006 and Pal 13)
with those of Galactic satellites with well-measured proper motions. These
clusters have orbits that are highly eccentric and of various inclinations with
respect to the Galactic plane. In contrast, the orbits of the Galactic
satellites are of low to moderate eccentricity and highly inclined. Based on
orbit types, chemical abundances and cluster parameters, we discuss the
properties of the hypothetical host systems of the remote globular clusters in
the Searle-Zinn paradigm. It is apparent that clusters such as NGC 5466, NGC
6934 and NGC 7006 formed in systems that more likely resemble the Fornax dSph,
rather than the Sagittarius dSph. We also discuss plausible causes for the
difference found so far between the orbit type of outer halo clusters and that
of Galactic satellites and for the tentative, yet suggestive phase-space
scatter found among outer halo clusters.Comment: 27 pages, 5 figures, to be published in the Astronomical Journa
Measurements of laser-hole boring into overdense plasmas using x-ray laser refractometry(invited)
Copyright 1999 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. The following article appeared in Review of Scientific Instruments, 70(1), 543-548, 1986 and may be found at http://dx.doi.org/10.1063/1.114938
The Magellanic Stream and the density of coronal gas in the Galactic halo
The properties of the Magellanic Stream constrain the density of coronal gas
in the distant Galactic halo. We show that motion through ambient gas can
strongly heat Stream clouds, driving mass loss and causing evaporation. If the
ambient gas density is too high, then evaporation occurs on unreasonably short
timescales. Since heating dominates drag, tidal stripping appears to be
responsible for producing the Stream. Requiring the survival of the cloud MS IV
for 500 Myr sets an upper limit on the halo gas density n_H< 10^{-5} cm^{-3} at
50 kpc, roughly a factor of 10 lower than that estimated from the drag model of
Moore & Davis (1994). Implications for models of the evolution of gas in galaxy
halos are discussed.Comment: 4 pages, 1 figure, in press, ApJ
Magellanic Cloud Periphery Carbon Stars IV: The SMC
The kinematics of 150 carbon stars observed at moderate dispersion on the
periphery of the Small Magellanic Cloud are compared with the motions of
neutral hydrogen and early type stars in the Inter-Cloud region. The
distribution of radial velocities implies a configuration of these stars as a
sheet inclined at 73+/-4 degrees to the plane of the sky. The near side, to the
South, is dominated by a stellar component; to the North, the far side contains
fewer carbon stars, and is dominated by the neutral gas. The upper velocity
envelope of the stars is closely the same as that of the gas. This
configuration is shown to be consistent with the known extension of the SMC
along the line of sight, and is attributed to a tidally induced disruption of
the SMC that originated in a close encounter with the LMC some 0.3 to 0.4 Gyr
ago. The dearth of gas on the near side of the sheet is attributed to ablation
processes akin to those inferred by Weiner & Williams (1996) to collisional
excitation of the leading edges of Magellanic Stream clouds. Comparison with
pre LMC/SMC encounter kinematic data of Hardy, Suntzeff, & Azzopardi (1989) of
carbon stars, with data of stars formed after the encounter, of Maurice et al.
(1989), and Mathewson et al. (a986, 1988) leaves little doubt that forces other
than gravity play a role in the dynamics of the H I.Comment: 30 pages; 7 figures, latex compiled, 1 table; to appear in AJ (June
2000
Detection of Cold Atomic Clouds in the Magellanic Bridge
We report a detection of cold atomic hydrogen in the Magellanic Bridge using
21-cm absorption spectroscopy toward the radio source B0312-770. With a column
density of N_HI=1.2E20 cm^-2, a maximum absorption optical depth of tau=0.10
and a maximum 21-cm emission brightness temperature of 1.4 K, this line of
sight yields a spin temperature, T_s, between 20 K and 40 K. H I 21-cm
absorption and emission spectroscopy toward 7 other low column density
sightlines on the periphery of the LMC and SMC reveal absorption toward one
additional background radio source behind the SMC with tau=0.03. The data have
typical sensitivities of sigma_tau=0.005 to 0.070 in absorption and
sigma_{T_B}=0.03 K in emission. These data demonstrate the presence of a cold
atomic phase which is probably accompanied by molecular condensations in the
tenuous interstellar medium of the Bridge region. Young OB stars observed in
the Magellanic Bridge could form "in situ" from these cold condensations rather
than migrate from regions of active star formation in the main body of the SMC.
The existence of cold condensations and star formation in the Magellanic Bridge
might be understood as a small scale version of the mechanism that produces
star formation in the tidal tails of interacting galaxies.Comment: 25 pages, uses AASTeX and psfig; Accepted for Publication in the
Astronomical Journa
The critical velocity effect as a cause for the H\alpha emission from the Magellanic stream
Observations show significant H\alpha-emissions in the Galactic halo near the
edges of cold gas clouds of the Magellanic Stream. The source for the
ionization of the cold gas is still a widely open question. In our paper we
discuss the critical velocity effect as a possible explanation for the observed
H\alpha-emission. The critical velocity effect can yield a fast ionization of
cold gas if this neutral gas passes through a magnetized plasma under suitable
conditions. We show that for parameters that are typical for the Magellanic
Stream the critical velocity effect has to be considered as a possible
ionization source of high relevance.Comment: 9 pages, 2 figures. accepted, to appear in The Astrophysical Journa
- …
