213 research outputs found

    Arterial CO2 fluctuations modulate neuronal rhythmicity: Implications for MEG and fMRI studies of resting-state networks

    Get PDF
    A fast emerging technique for studying human resting state networks (RSNs) is based on spontaneous temporal fluctuations in neuronal oscillatory power, as measured by magnetoencephalography. However, it has been demonstrated recently that this power is sensitive to modulations in arterial CO2 concentration. Arterial CO2 can be modulated by natural fluctuations in breathing pattern, as might typically occur during the acquisition of an RSN experiment. Here, we demonstrate for the first time the fine-scale dependence of neuronal oscillatory power on arterial CO2 concentration, showing that reductions in alpha, beta, and gamma power are observed with even very mild levels of hypercapnia (increased arterial CO2). We use a graded hypercapnia paradigm and participant feedback to rule out a sensory cause, suggesting a predominantly physiological origin. Furthermore, we demonstrate that natural fluctuations in arterial CO2, without administration of inspired CO2, are of a sufficient level to influence neuronal oscillatory power significantly in the delta-, alpha-, beta-, and gamma-frequency bands. A more thorough understanding of the relationship between physiological factors and cortical rhythmicity is required. In light of these findings, existing results, paradigms, and analysis techniques for the study of resting-state brain data should be revisited

    Increased spontaneous MEG signal diversity for psychoactive doses of ketamine, LSD and psilocybin

    Get PDF
    What is the level of consciousness of the psychedelic state? Empirically, measures of neural signal diversity such as entropy and Lempel-Ziv (LZ) complexity score higher for wakeful rest than for states with lower conscious level like propofol-induced anesthesia. Here we compute these measures for spontaneous magnetoencephalographic (MEG) signals from humans during altered states of consciousness induced by three psychedelic substances: psilocybin, ketamine and LSD. For all three, we find reliably higher spontaneous signal diversity, even when controlling for spectral changes. This increase is most pronounced for the single-channel LZ complexity measure, and hence for temporal, as opposed to spatial, signal diversity. We also uncover selective correlations between changes in signal diversity and phenomenological reports of the intensity of psychedelic experience. This is the first time that these measures have been applied to the psychedelic state and, crucially, that they have yielded values exceeding those of normal waking consciousness. These findings suggest that the sustained occurrence of psychedelic phenomenology constitutes an elevated level of consciousness - as measured by neural signal diversity

    The effect of rTMS over the inferior parietal lobule on EEG sensorimotor reactivity differs according to self-reported traits of autism in typically developing individuals

    Get PDF
    Previous research suggested that EEG markers of mirror neuron system activation may differ, in the normal population as a function of different levels of the autistic spectrum quotient; (AQ). The present study aimed at modulating the EEG sensorimotor reactivity induced by hand movement observation by means of repetitive transcranial magnetic stimulation (rTMS) applied to the inferior parietal lobule. We examined how the resulting rTMS modulation differed in relation to the self-reported autistic traits in the typically developing population. Results showed that during sham stimulation, all participants had significantly greater sensorimotor alpha reactivity (motor cortex - C electrodes) when observing hand movements compared to static hands. This sensorimotor alpha reactivity difference was reduced during active rTMS stimulation. Results also revealed that in the average AQ group at sham there was a significant increase in low beta during hand movement than static hand observation (pre-motor areas - FC electrodes) and that (like alpha over the C electrodes) this difference is abolished when active rTMS is delivered. Participants with high AQ scores showed no significant difference in low beta sensorimotor reactivity between active and sham rTMS during static hand or hand movement observation. These findings suggest that unlike sham, active rTMS over the IPL modulates the oscillatory activity of the low beta frequency of a distal area, namely the anterior sector of the sensorimotor cortex, when participants observe videos of static hand. Importantly, this modulation differs according to the degree of self-reported traits of autism in a typically developing population. © 2013 Elsevier B.V. All rights reserved

    Restoring brain function after stroke - bridging the gap between animals and humans

    Get PDF
    Stroke is the leading cause of complex adult disability in the world. Recovery from stroke is often incomplete, which leaves many people dependent on others for their care. The improvement of long-term outcomes should, therefore, be a clinical and research priority. As a result of advances in our understanding of the biological mechanisms involved in recovery and repair after stroke, therapeutic opportunities to promote recovery through manipulation of poststroke plasticity have never been greater. This work has almost exclusively been carried out in preclinical animal models of stroke with little translation into human studies. The challenge ahead is to develop a mechanistic understanding of recovery from stroke in humans. Advances in neuroimaging techniques now enable us to reconcile behavioural accounts of recovery with molecular and cellular changes. Consequently, clinical trials can be designed in a stratified manner that takes into account when an intervention should be delivered and who is most likely to benefit. This approach is expected to lead to a substantial change in how restorative therapeutic strategies are delivered in patients after stroke

    Early visual ERPs show stable body-sensitive patterns over a 4-week test period

    Get PDF
    Event-related potential (ERP) studies feature among the most cited papers in the field of body representation, with recent research highlighting the potential of ERPs as neuropsychiatric biomarkers. Despite this, investigation into how reliable early visual ERPs and body-sensitive effects are over time has been overlooked. This study therefore aimed to assess the stability of early body-sensitive effects and visual P1, N1 and VPP responses. Participants were asked to identify pictures of their own bodies, other bodies and houses during an EEG test session that was completed at the same time, once a week, for four consecutive weeks. Results showed that amplitude and latency of early visual components and their associated body-sensitive effects were stable over the 4-week period. Furthermore, correlational analyses revealed that VPP component amplitude might be more reliable than VPP latency and specific electrode sites might be more robust indicators of body-sensitive cortical activity than others. These findings suggest that visual P1, N1 and VPP responses, alongside body-sensitive N1/VPP effects, are robust indications of neuronal activity. We conclude that these components are eligible to be considered as electrophysiological biomarkers relevant to body representation

    The Role of the Dorsolateral Prefrontal Cortex in Ego Dissolution and Emotional Arousal During the Psychedelic State

    Get PDF
    Lysergic acid diethylamide (LSD) is a classic serotonergic psychedelic that induces a profoundly altered conscious state. In conjunction with psychological support, it is currently being explored as a treatment for generalized anxiety disorder and depression. The dorsolateral prefrontal cortex (DLPFC) is a brain region that is known to be involved in mood regulation and disorders; hypofunction in the left DLPFC is associated with depression. This study investigated the role of the DLPFC in the psycho‐emotional effects of LSD with functional magnetic resonance imaging (fMRI) and magnetoencephalography (MEG) data of healthy human participants during the acute LSD experience. In the fMRI data, we measured the correlation between changes in resting‐state functional connectivity (RSFC) of the DLPFC and post‐scan subjective ratings of positive mood, emotional arousal, and ego dissolution. We found significant, positive correlations between ego dissolution and functional connectivity between the left & right DLPFC, thalamus, and a higher‐order visual area, the fusiform face area (FFA). Additionally, emotional arousal was significantly associated with increased connectivity between the right DLPFC, intraparietal sulcus (IPS), and the salience network (SN). A confirmational “reverse” analysis, in which the outputs of the original RSFC analysis were used as input seeds, substantiated the role of the right DLPFC and the aforementioned regions in both ego dissolution and emotional arousal. Subsequently, we measured the effects of LSD on directed functional connectivity in MEG data that was source‐localized to the input and output regions of both the original and reverse analyses. The Granger causality (GC) analysis revealed that LSD increased information flow between two nodes of the ‘ego dissolution network’, the thalamus and the DLPFC, in the theta band, substantiating the hypothesis that disruptions in thalamic gating underlie the experience of ego dissolution. Overall, this multimodal study elucidates a role for the DLPFC in LSD‐induced states of consciousness and sheds more light on the brain basis of ego dissolution

    Modern Clinical Research on LSD

    Get PDF
    All modern clinical studies using the classic hallucinogen lysergic acid diethylamide (LSD) in healthy subjects or patients in the last 25 years are reviewed herein. There were five recent studies in healthy participants and one in patients. In a controlled setting, LSD acutely induced bliss, audiovisual synesthesia, altered meaning of perceptions, derealization, depersonalization, and mystical experiences. These subjective effects of LSD were mediated by the 5-HT2A receptor. LSD increased feelings of closeness to others, openness, trust, and suggestibility. LSD impaired the recognition of sad and fearful faces, reduced left amygdala reactivity to fearful faces, and enhanced emotional empathy. LSD increased the emotional response to music and the meaning of music. LSD acutely produced deficits in sensorimotor gating, similar to observations in schizophrenia. LSD had weak autonomic stimulant effects and elevated plasma cortisol, prolactin, and oxytocin levels. Resting-state functional magnetic resonance studies showed that LSD acutely reduced the integrity of functional brain networks and increased connectivity between networks that normally are more dissociated. LSD increased functional thalamocortical connectivity and functional connectivity of the primary visual cortex with other brain areas. The latter effect was correlated with subjective hallucinations. LSD acutely induced global increases in brain entropy that were associated with greater trait openness 14 days later. In patients with anxiety associated with life-threatening disease, anxiety was reduced for 2 months after two doses of LSD. In medical settings, no complications of LSD administration were observed. These data should contribute to further investigations of the therapeutic potential of LSD in psychiatry

    Time course and specificity of sensory-motor alpha modulation during the observation of hand motor acts and gestures: a high density EEG study

    Get PDF
    The main aim of the present study was to explore, by means of high-density EEG, the intensity and the temporal pattern of event-related sensory-motor alpha desynchronization (ERD) during the observation of different types of hand motor acts and gestures. In particular, we aimed to investigate whether the sensory-motor ERD would show a specific modulation during the observation of hand behaviors differing for goal-relatedness (hand grasping of an object and meaningless hand movements) and social relevance (communicative hand gestures and grasping within a social context). Time course analysis of alpha suppression showed that all types of hand behaviors were effective in triggering sensory-motor alpha ERD, but to a different degree depending on the category of observed hand motor acts and gestures. Meaningless gestures and hand grasping were the most effective stimuli, resulting in the strongest ERD. The observation of social hand behaviors such as social grasping and communicative gestures, triggered a more dynamic time course of ERD compared to that driven by the observation of simple grasping and meaningless gestures. These findings indicate that the observation of hand motor acts and gestures evoke the activation of a motor resonance mechanism that differs on the basis of the goal-relatedness and the social relevance of the observed hand behavior

    Observational Learning of New Movement Sequences Is Reflected in Fronto-Parietal Coherence

    Get PDF
    Mankind is unique in her ability for observational learning, i.e. the transmission of acquired knowledge and behavioral repertoire through observation of others' actions. In the present study we used electrophysiological measures to investigate brain mechanisms of observational learning. Analysis investigated the possible functional coupling between occipital (alpha) and motor (mu) rhythms operating in the 10Hz frequency range for translating “seeing” into “doing”. Subjects observed movement sequences consisting of six consecutive left or right hand button presses directed at one of two target-buttons for subsequent imitation. Each movement sequence was presented four times, intervened by short pause intervals for sequence rehearsal. During a control task subjects observed the same movement sequences without a requirement for subsequent reproduction. Although both alpha and mu rhythms desynchronized during the imitation task relative to the control task, modulations in alpha and mu power were found to be largely independent from each other over time, arguing against a functional coupling of alpha and mu generators during observational learning. This independence was furthermore reflected in the absence of coherence between occipital and motor electrodes overlaying alpha and mu generators. Instead, coherence analysis revealed a pair of symmetric fronto-parietal networks, one over the left and one over the right hemisphere, reflecting stronger coherence during observation of movements than during pauses. Individual differences in fronto-parietal coherence were furthermore found to predict imitation accuracy. The properties of these networks, i.e. their fronto-parietal distribution, their ipsilateral organization and their sensitivity to the observation of movements, match closely with the known properties of the mirror neuron system (MNS) as studied in the macaque brain. These results indicate a functional dissociation between higher order areas for observational learning (i.e. parts of the MNS as reflected in 10Hz coherence measures) and peripheral structures (i.e. lateral occipital gyrus for alpha; central sulcus for mu) that provide low-level support for observation and motor imagery of action sequences

    The Dynamics of Sensorimotor Cortical Oscillations during the Observation of Hand Movements: An EEG Study

    Get PDF
    Background The observation of action done by others determines a desynchronization of the rhythms recorded from cortical central regions. Here, we examined whether the observation of different types of hand movements (target directed, non-target directed, cyclic and non-cyclic) elicits different EEG cortical temporal patterns. Methodology Video-clips of four types of hand movements were shown to right-handed healthy participants. Two were target directed (grasping and pointing) motor acts; two were non-target directed (supinating and clenching) movements. Grasping and supinating were performed once, while pointing and clenching twice (cyclic movements). High-density EEG was recorded and analyzed by means of wavelet transform, subdividing the time course in time bins of 200 ms. The observation of all presented movements produced a desynchronization of alpha and beta rhythms in central and parietal regions. The rhythms desynchronized as soon as the hand movement started, the nadir being reached around 700 ms after movement onset. At the end of the movement, a large power rebound occurred for all bands. Target and non-target directed movements produced an alpha band desynchronization in the central electrodes at the same time, but with a stronger desynchronization and a prolonged rebound for target directed motor acts. Most interestingly, there was a clear correlation between the velocity profile of the observed movements and beta band modulation. Significance Our data show that the observation of motor acts determines a modulation of cortical rhythm analogous to that occurring during motor act execution. In particular, the cortical motor system closely follows the velocity of the observed movements. This finding provides strong evidence for the presence in humans of a mechanism (mirror mechanism) mapping action observation on action execution motor programs
    corecore