23 research outputs found
Threshold modeling of extreme spatial rainfall
We propose an approach to spatial modeling of extreme rainfall, based on max-stable processes fitted using partial duration series and a censored threshold likelihood function. The resulting models are coherent with classical extreme-value theory and allow the consistent treatment of spatial dependence of rainfall using ideas related to those of classical geostatistics. We illustrate the ideas through data from the Val Ferret watershed in the Swiss Alps, based on daily cumulative rainfall totals recorded at 24 stations for four summers, augmented by a longer series from nearby. We compare the fits of different statistical models appropriate for spatial extremes, select that best fitting our data, and compare return level estimates for the total daily rainfall over the stations. The method can be used in other situations to produce simulations needed for hydrological models, and in particular, for the generation of spatially heterogeneous extreme rainfall fields over catchments
A decade of monitoring micropollutants in urban wet-weather flows: What did we learn?
Urban wet-weather discharges from combined sewer overflows (CSO) and stormwater outlets (SWO) are a potential pathway for micropollutants (trace contaminants) to surface waters, posing a threat to the environment and possible water reuse applications. Despite large efforts to monitor micropollutants in the last decade, the gained information is still limited and scattered. In a metastudy we performed a data-driven analysis of measurements collected at 77 sites (683 events, 297 detected micropollutants) over the last decade to investigate which micropollutants are most relevant in terms of 1) occurrence and 2) potential risk for the aquatic environment, 3) estimate the minimum number of data to be collected in monitoring studies to reliably obtain concentration estimates, and 4) provide recommendations for future monitoring campaigns. We highlight micropollutants to be prioritized due to their high occurrence and critical concentration levels compared to environmental quality standards. These top-listed micropollutants include contaminants from all chemical classes (pesticides, heavy metals, polycyclic aromatic hydrocarbons, personal care products, pharmaceuticals, and industrial and household chemicals). Analysis of over 30,000 event mean concentrations shows a large fraction of measurements (> 50%) were below the limit of quantification, stressing the need for reliable, standard monitoring procedures. High variability was observed among events and sites, with differences between micropollutant classes. The number of events required for a reliable estimate of site mean concentrations (error bandwidth of 1 around the “true" value) depends on the individual micropollutant. The median minimum number of events is 7 for CSO (2 to 31, 80%-interquantile) and 6 for SWO (1 to 25 events, 80%-interquantile). Our analysis indicates the minimum number of sites needed to assess global pollution levels and our data collection and analysis can be used to estimate the required number of sites for an urban catchment. Our data-driven analysis demonstrates how future wet-weather monitoring programs will be more effective if the consequences of high variability inherent in urban wet-weather discharges are considered
Multi-bunch effect of resistive wall in the Beam Delivery System of the Compact Linear Collider
Wake fields in the CLIC Beam Delivery System (BDS) can cause severe single or multi-bunch effects leading to luminosity loss. The main contributors in the BDS are geometric and resistive wall wake fields of the collimators and resistive wall wakes of the beam pipe. The present work focuses only on the multi-bunch effects from resistive wall. Using particle tracking with wake fields through the BDS, we have established the aperture radius, above which the effect of the wake fields becomes negligible. Our simulations were later extended to include a realistic aperture model along the BDS as well as the collimators. The two cases of 3 TeV and 500 GeV have been examined
Accurate drainage network extraction and monitoring in a high-mountain catchment
We study the accuracy of channel network extraction methods obtained in two subcatchments of an alpine watershed in Switzerland and compare the results to the ones obtained with the real network, carefully monitored with a high precision DGPS during Summer 2011. A 1 x 1 m2 LiDAR-derived Digital Terrain Model is used for the automatic channel extraction method. We compare automatic and objective geomorphic feature extraction to the more classic methods based on thresholding of drainage area and local slope. The analysis of the drainage density underlined that the results are consistent for channel network derived by proper morphometric approaches compared to the results obtained with the monitored network, while drainage density derived under standard methodologies proved to be unreliable. Our results suggests a careful combination of field validation and automatic morphometric approaches, while they cast serious doubts on classic approaches based on standard topographic thresholds in complex high-mountain environments where heterogeneity of initiation processes is the norm. Moreover, 281 channel heads are analyzed in the Slope-Area diagram and classified along two different initiation processes, namely groundwater seeping upward and runoff induced channels. The first ones tend to imply lower topographic thresholds of A and S with respect to those initiated by runoff processes, whereas linear regressions indicate a rather poor inverse relationship between A and S for both mechanisms of channel initiation
Similarity Analysis between near surface soil moisture and streamflow during recession events in an alpine catchment
Spatial and temporal variability of near surface soil moisture is important for understanding streamflow generation in high altitude mountain catchments since antecedent soil moisture plays an important role in the timing of runoff. For relatively small to medium sized catchments, the spatial variability of near surface soil moisture is hard to capture with remote sensing techniques and distributed point measurements are needed. Linking local measurements of soil moisture with integrating catchment scale streamflow measurements remains a great challenge in hydrological modeling. Since 2008, an alpine watershed of 20.4 km2 has been intensively monitored in the Swiss Alps, with a deployment of a network of wireless meteorological stations, measuring soil moisture along with other meteorological forcings. The discharge is monitored at three different sites. We present some preliminary results from a statistical analysis linking the spatial variation of the soil moisture, measured at 20 and 40 cm, with the variation of the streamflow in the particular case of recession events. A classic parameterization of recession events relating the variation of the discharge dQ/dt to the discharge Q by is used and transposed to soil moisture data. The parameterized soil moisture variation is then partitioned into runoff and evapotranspiration leading to better knowledge of local processes at the hillslope scale
A decade of monitoring micropollutants in urban wet-weather flows: What did we learn?
Urban wet-weather discharges from combined sewer overflows (CSO) and stormwater outlets (SWO) are a potential pathway for micropollutants (trace contaminants) to surface waters, posing a threat to the environment and possible water reuse applications. Despite large efforts to monitor micropollutants in the last decade, the gained information is still limited and scattered. In a metastudy we performed a data-driven analysis of measurements collected at 77 sites (683 events, 297 detected micropollutants) over the last decade to investigate which micropollutants are most relevant in terms of 1) occurrence and 2) potential risk for the aquatic environment, 3) estimate the minimum number of data to be collected in monitoring studies to reliably obtain concentration estimates, and 4) provide recommendations for future monitoring campaigns. We highlight micropollutants to be prioritized due to their high occurrence and critical concentration levels compared to environmental quality standards. These top-listed micropollutants include contaminants from all chemical classes (pesticides, heavy metals, polycyclic aromatic hydrocarbons, personal care products, pharmaceuticals, and industrial and household chemicals). Analysis of over 30,000 event mean concentrations shows a large fraction of measurements (> 50%) were below the limit of quantification, stressing the need for reliable, standard monitoring procedures. High variability was observed among events and sites, with differences between micropollutant classes. The number of events required for a reliable estimate of site mean concentrations (error bandwidth of 1 around the “true" value) depends on the individual micropollutant. The median minimum number of events is 7 for CSO (2 to 31, 80%-interquantile) and 6 for SWO (1 to 25 events, 80%-interquantile). Our analysis indicates the minimum number of sites needed to assess global pollution levels and our data collection and analysis can be used to estimate the required number of sites for an urban catchment. Our data-driven analysis demonstrates how future wet-weather monitoring programs will be more effective if the consequences of high variability inherent in urban wet-weather discharges are considered.ISSN:0043-1354ISSN:1879-244
Geomorphic Signatures on Brutsaert Base Flow Recession Analysis: case study of 27 Swiss catchments
Recession flow analysis are crucial in many areas of water resource management and useful to forecast base flow in gauged rivers. Moving from a classical recession curve analysis method, a large set of recession curves has been analyzed from Swiss streamflow data of 27 watersheds. For these catchments, digital elevation models have been precisely analyzed and a method aimed at the geomorphic origins of recession curves has been applied to the Swiss dataset. The method links river network morphology, epitomized by time-varying distribution of contributing channel sites, with the classic parametrization of recession events. This is done by assimilating two scaling exponents, and bG, with |dQ/dt|Q where Q is at-a-station gauged flow rate and N(l) G(l)bG where l is the downstream distance from the channel heads receding in time at constant speed c, N(l) is the number of draining channel reaches located at distance l from their heads, and G(l) is the total drainage network length at a distance greater or equal to l. We find that the method provides good results in catchments where drainage density can be regarded as spatially constant. We propose several corrections to the method accounting for arbitrary local drainage densities affecting the local drainage inflow per unit channel length. In particular, we relax the assumption of uniform constant speed c. Such corrections properly vanish when the local drainage density become spatially constant. Overall, definite geomorphic signatures are recognizable for recession curves. In general, we suggest that this conceptual model might be useful to estimate the low flow regime of natural ungauged basins by predicting its features solely from information remotely acquired and objectively manipulated through DEM data
The CLIC Beam Delivery System towards the Conceptual Design Report
The CLIC Conceptual Design Report must be ready by 2010. This paper aims at addressing all the critical points of the CLIC BDS to be later implemented in the CDR. This includes risk evaluation and possible solutions to a number of selected points. The smooth and practical transition between the 500 GeV CLIC and the design energy of 3 TeV is also studied
The CLIC BDS towards the Conceptual Design Report
The CLIC Conceptual Design Report must be ready by 2010. This paper aims at addressing all the critical points of the CLIC BDS to be later implemented in the CDR. This includes risk evaluation and possible solutions to a number of selected points. The smooth and practical transition between the 500 GeV CLIC and the design energy of 3 TeV is also studied
