76,826 research outputs found
On Normal Subgroups of Coxeter Groups Generated by Standard Parabolic Subgroups
We discuss one construction of nonstandard subgroups in the category of
Coxeter groups.
Two formulae for the growth series of such a subgroups are given.
As an application we construct a flag simple convex polytope, whose
f-polynomial has non-real roots.Comment: 12 pages, figure
Water Vapour Effects in Mass Measurement
Water vapour inside the mass comparator enclosure is a critical parameter. In
fact, fluctuations of this parameter during mass weighing can lead to errors in
the determination of an unknown mass. To control that, a proposal method is
given and tested. Preliminary results of our observation of water vapour
sorption and desorption processes from walls and mass standard are reported
ALESEP: A computer program for the analysis of airfoil leading edge separation bubbles
The ALESEP program for the analysis of the inviscid/viscous interaction which occurs due to the presence of a closed laminar transitional separation bubble on an airflow is presented. The ALESEP code provides a iterative solution of the boundary layer equations expressed in an inverse formulation coupled to a Cauchy integral representation of the inviscid flow. This interaction analysis is treated as a local perturbation to a known solution obtained from a global airfoil analysis. Part of the required input to the ALESEP code are the reference displacement thickness and tangential velocity distributions. Special windward differencing may be used in the reversed flow regions of the separation bubble to accurately account for the flow direction in the discretization of the streamwise convection of momentum. The ALESEP code contains a forced transition model based on a streamwise intermittency function and a natural transition model based on a solution of the integral form of the turbulent kinetic energy equation. Instructions for the input/output, and program usage are presented
What makes a 'good group'? Exploring the characteristics and performance of undergraduate student groups
Group work forms the foundation for much of student learning within higher education, and has many educational, social and professional benefits. This study aimed to explore the determinants of success or failure for undergraduate student teams and to define a ‘good group’ through considering three aspects of group success: the task, the individuals, and the team. We employed a mixed methodology, combining demographic data with qualitative observations and task and peer evaluation scores. We determined associations between group dynamic and behaviour, demographic composition, member personalities and attitudes towards one another, and task success. We also employed a cluster analysis to create a model outlining the attributes of a good small group learning team in veterinary education. This model highlights that student groups differ in measures of their effectiveness as teams, independent of their task performance. On the basis of this, we suggest that groups who achieve high marks in tasks cannot be assumed to have acquired team working skills, and therefore if these are important as a learning outcome, they must be assessed directly alongside the task output
Ultraluminous X-ray Sources Powered by Radiatively Efficient Two-Phased Super-Eddington Accretion onto Stellar Mass Black holes
The radiation spectra of many of the brightest ultraluminous X-ray sources
(ULXs) are dominated by a hard power law component, likely powered by a hot,
optically thin corona that Comptonizes soft seed photons emitted from a cool,
optically thick black hole accretion disk. Before its dissipation and
subsequent conversion into coronal photon power, the randomized gravitational
binding energy responsible for powering ULX phenomena must separate from the
mass of its origin by a means other than, and quicker than, electron
scattering-mediated radiative diffusion. Therefore, the release of accretion
power in ULXs is not necessarily subject to Eddington-limited photon trapping,
as long as it occurs in a corona. Motivated by these basic considerations, we
present a model of ULXs powered by geometrically thin accretion onto stellar
mass black holes. We argue that the radiative efficiency of the flow remains
high if the corona is magnetized or optically thin and the majority of the
accretion power escapes in the form of radiation rather than an outflow. Within
the context of the current black hole X-ray binary paradigm, our ULX model may
be viewed as an extension of the very high state observed in Galactic sources.
(abridged)Comment: 11 page
Pressures measured in flight on the aft fuselage and external nozzle of a twin-jet fighter
Fuselage, boundary layer, and nozzle pressures were measured in flight for a twin jet fighter over a Mach number range from 0.60 to 2.00 at test altitudes of 6100, 10,700, and 13,700 meters for angles of attack ranging from 0 deg to 7 deg. Test data were analyzed to find the effects of the propulsion system geometry. The flight variables, and flow interference. The aft fuselage flow field was complex and showed the influence of the vertical tail, nacelle contour, and the wing. Changes in the boattail angle of either engine affected upper fuselage and lower fuselage pressure coefficients upstream of the nozzle. Boundary layer profiles at the forward and aft locations on the upper nacelles were relatively insensitive to Mach number and altitude. Boundary layer thickness decreased at both stations as angle of attack increased above 4 deg. Nozzle pressure coefficient was influenced by the vertical tail, horizontal tail boom, and nozzle interfairing; the last two tended to separate flow over the top of the nozzle from flow over the bottom of the nozzle. The left nozzle axial force coefficient was most affected by Mach number and left nozzle boattail angle. At Mach 0.90, the nozzle axial force coefficient was 0.0013
Characterization of a thermally imidized soluble polyimide film
A soluble aromatic poly(amic acid) film was converted to a soluble polyimide by staging at 25 deg intervals to 325 C and characterized at each interval by several analytical methods. The behavior observed was consistent with an interpretation that a reduction occurred in molecular weight of the poly(amic acid) during the initial stages of cure before the ultimate molecular weight was achieved as a polyimide. This interpretation was supported by the results of solution viscosity, gel permeation chromatography, low angle laser light scattering photometry and infrared spectroscopy analysis. The results serve to increase the fundamental understanding of how polyimides are thermally formed from poly(amic acids)
Rotorcraft contingency power study
Twin helicopter engines are often sized by the power requirement of a safe mission completion after the failure of one of the two engines. This study was undertaken for NASA Lewis by General Electric Co. to evaluate the merits of special design features to provide a 2-1/2 Contingency Power rating, permitting an engine size reduction. The merits of water injection, turbine cooling airflow modulation, throttle push, and a propellant auxiliary power plant were evaluated using military Life Cycle Cost (LCC) and commercial helicopter Direct Operating Cost (DOC) merit factors in a rubber engine and a rubber aircraft scenario
- …
