2,400 research outputs found

    Doubly perturbed S3S_3 neutrinos and the s13s_{13} mixing parameter

    Full text link
    We further study a predictive model for the masses and mixing matrix of three Majorana neutrinos. At zeroth order the model yielded degenerate neutrinos and a generalized ``tribimaximal" mixing matrix. At first order the mass splitting was incorporated and the tribimaximal mixing matrix emerged with very small corrections but with a zero value for the parameter s13s_{13}. In the present paper a different, assumed weaker, perturbation is included which gives a non zero value for s13s_{13} and further corrections to other quantities. These corrections are worked out and their consequences discussed under the simplifying assumption that the conventional CP violation phase vanishes. It is shown that the existing measurements of the parameter s23s_{23} provide strong bounds on s13s_{13} in this model.Comment: 8 page

    Electrical transport and optical studies of ferromagnetic Cobalt doped ZnO nanoparticles exhibiting a metal-insulator transition

    Full text link
    The observed correlation of oxygen vacancies and room temperature ferromagnetic ordering in Co doped ZnO1-o nanoparticles reported earlier (Naeem et al Nanotechnology 17, 2675-2680) has been further explored by transport and optical measurements. In these particles room temperature ferromagnetic ordering had been observed to occur only after annealing in forming gas. In the current work the optical properties have been studied by diffuse reflection spectroscopy in the UV-Vis region and the band gap of the Co doped compositions has been found to decrease with Co addition. Reflections minima are observed at the energies characteristic of Co+2 d-d (tethrahedral symmetry) crystal field transitions, further establishing the presence of Co in substitutional sites. Electrical transport measurements on palletized samples of the nanoparticles show that the effect of a forming gas is to strongly decrease the resistivity with increasing Co concentration. For the air annealed and non-ferromagnetic samples the variation in the resistivity as a function of Co content are opposite to those observed in the particles prepared in forming gas. The ferromagnetic samples exhibit an apparent change from insulator to metal with increasing temperatures for T>380K and this change becomes more pronounced with increasing Co content. The magnetic and resistive behaviors are correlated by considering the model by Calderon et al [M. J. Calderon and S. D. Sarma, Annals of Physics 2007 (Accepted doi: 10.1016/j.aop.2007.01.010] where the ferromagnetism changes from being mediated by polarons in the low temperature insulating region to being mediated by the carriers released from the weakly bound states in the higher temperature metallic region.Comment: 7 pages, 6 figure

    Three Dimensional Polarimetric Neutron Tomography of Magnetic Fields

    Get PDF
    Through the use of Time-of-Flight Three Dimensional Polarimetric Neutron Tomography (ToF 3DPNT) we have for the first time successfully demonstrated a technique capable of measuring and reconstructing three dimensional magnetic field strengths and directions unobtrusively and non-destructively with the potential to probe the interior of bulk samples which is not amenable otherwise. Using a pioneering polarimetric set-up for ToF neutron instrumentation in combination with a newly developed tailored reconstruction algorithm, the magnetic field generated by a current carrying solenoid has been measured and reconstructed, thereby providing the proof-of-principle of a technique able to reveal hitherto unobtainable information on the magnetic fields in the bulk of materials and devices, due to a high degree of penetration into many materials, including metals, and the sensitivity of neutron polarisation to magnetic fields. The technique puts the potential of the ToF time structure of pulsed neutron sources to full use in order to optimise the recorded information quality and reduce measurement time.Comment: 12 pages, 4 figure

    Effect of Reducing Atmosphere on the Magnetism of Zn1-xCoxO Nanoparticles

    Full text link
    We report the crystal structure and magnetic properties of Zn1-xCoxO nanoparticles synthesized by heating metal acetates in organic solvent. The nanoparticles were crystallized in wurtzite ZnO structure after annealing in air and in a forming gas (Ar95%+H5%). The X-ray diffraction and X-ray photoemission spectroscopy (XPS) data for different Co content show clear evidence for the Co+2 ions in tetrahedral symmetry, indicating the substitution of Co+2 in ZnO lattice. However samples with x=0.08 and higher cobalt content also indicate the presence of Co metal clusters. Only those samples annealed in the reducing atmosphere of the forming gas, and that showed the presence of oxygen vacancies, exhibited ferromagnetism at room temperature. The air annealed samples remained non-magnetic down to 77K. The essential ingredient in achieving room temperature ferromagnetism in these Zn1-xCoxO nanoparticles was found to be the presence of additional carriers generated by the presence of the oxygen vacancies.Comment: 11 pages, 6 figures, submitted to Nanotechnology IO

    Activities of daily life recognition using process representation modelling to support intention analysis

    Get PDF
    Purpose – This paper aims to focus on applying a range of traditional classification- and semantic reasoning-based techniques to recognise activities of daily life (ADLs). ADL recognition plays an important role in tracking functional decline among elderly people who suffer from Alzheimer’s disease. Accurate recognition enables smart environments to support and assist the elderly to lead an independent life for as long as possible. However, the ability to represent the complex structure of an ADL in a flexible manner remains a challenge. Design/methodology/approach – This paper presents an ADL recognition approach, which uses a hierarchical structure for the representation and modelling of the activities, its associated tasks and their relationships. This study describes an approach in constructing ADLs based on a task-specific and intention-oriented plan representation language called Asbru. The proposed method is particularly flexible and adaptable for caregivers to be able to model daily schedules for Alzheimer’s patients. Findings – A proof of concept prototype evaluation has been conducted for the validation of the proposed ADL recognition engine, which has comparable recognition results with existing ADL recognition approaches. Originality/value – The work presented in this paper is novel, as the developed ADL recognition approach takes into account all relationships and dependencies within the modelled ADLs. This is very useful when conducting activity recognition with very limited features

    A Robust Navigation Technique for Integration in the Guidance and Control of an Uninhabited Surface Vehicle

    Get PDF
    In this paper, we propose a novel robust navigational approach to be integrated with the guidance and control systems of an uninhabitedsurface vehicle Springer. A weighted Interval Kalman Filter (wIKF) in used for waypoint tracking, and has been compared with that of one that uses a conventional Kalman Filter (KF) navigational design. The conventional KF fails to predict correctly the vehicle’s heading when there is unmodelled uncertainty of the sensing equipment, and thus would negatively affect the performance of subsequent navigation, guidance and control (NGC). While the proposed method using a wIKF technique enhances robustness with respect to erroneous modelling, and thus secures better accuracy and efficiency in completing a mission

    Robust Adaptive Control of an Uninhabited Surface Vehicle

    Get PDF
    In this paper, we develop a novel and robust adaptive autopilot for uninhabited surface vehicles (USV). In practice, usually asudden change in dynamics results in aborted missions and the USV has to be rescued to avoid possible damage to other marine crafts inthe vicinity. This problem has been investigated in our innovative design, which enables the autopilot to cope well with significant changes in the system dynamics and empowers USVs to accomplish their desired missions. The model predictivecontrol technique is employed which adopts an online adaptive nature by utilising three algorithms. Even with random initialisation,significant improvements over the gradient descent and least squares approaches have been achieved by the modified weightedleast squares (WLS) method, which periodically reinitialising the covariance matrix. Extensive simulation studies have been performed to test and verify the advantages of the proposed method
    corecore