523 research outputs found

    Probing scattering phase shifts by attosecond streaking

    Full text link
    Attosecond streaking is one of the most fundamental processes in attosecond science allowing for a mapping of temporal (i.e. phase) information on the energy domain. We show that on the single-particle level attosecond streaking time shifts contain spectral phase information associated with the Eisenbud-Wigner-Smith (EWS) time delay, provided the influence of the streaking infrared field is properly accounted for. While the streaking phase shifts for short-ranged potentials agree with the associated EWS delays, Coulomb potentials require special care. We show that the interaction between the outgoing electron and the combined Coulomb and IR laser fields lead to a streaking phase shift that can be described classically

    Probing Electron Correlation via Attosecond XUV Pulses in the Two-Photon Double Ionization of Helium

    Full text link
    Recent experimental developments of high-intensity, short-pulse XUV light sources are enhancing our ability to study electron-electron correlations. We perform time-dependent calculations to investigate the so-called "sequential" regime (photon energy above 54.4 eV) in the two-photon double ionization of helium. We show that attosecond pulses allow to induce and probe angular and energy correlations of the emitted electrons. The final momentum distribution reveals regions dominated by the Wannier ridge break-up scenario and by post-collision interaction.Comment: 4 pages, 5 figure

    Treatment-resistant major depression: Rationale for NMDA receptors as targets and nitrous oxide as therapy

    Get PDF
    Major depressive disorder (MDD) remains a huge personal and societal encumbrance. Particularly burdensome is a virulent subtype of MDD, treatment resistant major depression (TMRD), which afflicts 15–30% of MDD patients. There has been recent interest in N-methyl-d-aspartate receptors (NMDARs) as targets for treatment of MDD and perhaps TMRD. To date, most pre-clinical and clinical studies have focused on ketamine, although psychotomimetic and other side effects may limit ketamine’s utility. These considerations prompted a recent promising pilot clinical trial of nitrous oxide, an NMDAR antagonist that acts through a mechanism distinct from that of ketamine, in patients with severe TRMD. In this paper, we review the clinical picture of TRMD as a subtype of MDD, the evolution of ketamine as a fast-acting antidepressant, and clinical and basic science studies supporting the possible use of nitrous oxide as a rapid antidepressant

    Universal features in sequential and nonsequential two-photon double ionization of helium

    Full text link
    We analyze two-photon double ionization of helium in both the nonsequential and sequential regime. We show that the energy spacing between the two emitted electrons provides the key parameter that controls both the energy and the angular distribution and reveals the universal features present in both the nonsequential and sequential regime. This universality, i.e., independence of photon energy, is a manifestation of the continuity across the threshold for sequential double ionization. For all photon energies, the energy distribution can be described by a universal shape function that contains only the spectral and temporal information entering second-order time-dependent perturbation theory. Angular correlations and distributions are found to be more sensitive to the photon energy. In particular, shake-up interferences have a large effect on the angular distribution. Energy spectra, angular distributions parameterized by the anisotropy parameters, and total cross sections presented in this paper are obtained by fully correlated time-dependent ab initio calculations.Comment: 12 pages, 8 figure

    Induced pseudoscalar coupling of the proton weak interaction

    Full text link
    The induced pseudoscalar coupling gpg_p is the least well known of the weak coupling constants of the proton's charged--current interaction. Its size is dictated by chiral symmetry arguments, and its measurement represents an important test of quantum chromodynamics at low energies. During the past decade a large body of new data relevant to the coupling gpg_p has been accumulated. This data includes measurements of radiative and non radiative muon capture on targets ranging from hydrogen and few--nucleon systems to complex nuclei. Herein the authors review the theoretical underpinnings of gpg_p, the experimental studies of gpg_p, and the procedures and uncertainties in extracting the coupling from data. Current puzzles are highlighted and future opportunities are discussed.Comment: 58 pages, Latex, Revtex4, prepared for Reviews of Modern Physic

    Certification of Confluence Proofs using CeTA

    Get PDF
    5 pages, International Workshop on Confluence 20145 pages, International Workshop on Confluence 2014CeTA was originally developed as a tool for certifying termination proofs which have to be provided as certificates in the CPF-format. Its soundness is proven as part of IsaFoR, the Isabelle Formalization of Rewriting. By now, CeTA can also be used for certifying confluence and non-confluence proofs. In this system description, we give a short overview on what kind of proofs are supported, and what information has to be given in the certificates. As we will see, only a small amount of information is required and so we hope that CSI will not stay the only confluence tool which can produce certificates

    On the formalization of termination techniques based on multiset orderings

    Get PDF
    Multiset orderings are a key ingredient in certain termination techniques like the recursive path ordering and a variant of size-change termination. In order to integrate these techniques in a certifier for termination proofs, we have added them to the Isabelle Formalization of Rewriting. To this end, it was required to extend the existing formalization on multiset orderings towards a generalized multiset ordering. Afterwards, the soundness proofs of both techniques have been established, although only after fixing some definitions. Concerning efficiency, it is known that the search for suitable parameters for both techniques is NP-hard. We show that checking the correct application of the techniques-where all parameters are provided-is also NP-hard, since the problem of deciding the generalized multiset ordering is NP-hard. © René Thiemann, Guillaume Allais, and JulianNagele

    Nonsequential two-photon double ionization of helium

    Full text link
    We present accurate time-dependent ab initio calculations on fully differential and total integrated (generalized) cross sections for the nonsequential two-photon double ionization of helium at photon energies from 40 to 54 eV. Our computational method is based on the solution of the time-dependent Schroedinger equation and subsequent projection of the wave function onto Coulomb waves. We compare our results with other recent calculations and discuss the emerging similarities and differences. We investigate the role of electronic correlation in the representation of the two-electron continuum states, which are used to extract the ionization yields from the fully correlated final wave function. In addition, we study the influence of the pulse length and shape on the cross sections in time-dependent calculations and address convergence issues.Comment: 14 pages, 10 figures; final version (acknowledgements and reference added, typos fixed

    Diagnosis of Alzheimer's Disease Based on Disease-Specific Autoantibody Profiles in Human Sera

    Get PDF
    After decades of Alzheimer's disease (AD) research, the development of a definitive diagnostic test for this disease has remained elusive. The discovery of blood-borne biomarkers yielding an accurate and relatively non-invasive test has been a primary goal. Using human protein microarrays to characterize the differential expression of serum autoantibodies in AD and non-demented control (NDC) groups, we identified potential diagnostic biomarkers for AD. The differential significance of each biomarker was evaluated, resulting in the selection of only 10 autoantibody biomarkers that can effectively differentiate AD sera from NDC sera with a sensitivity of 96.0% and specificity of 92.5%. AD sera were also distinguishable from sera obtained from patients with Parkinson's disease and breast cancer with accuracies of 86% and 92%, respectively. Results demonstrate that serum autoantibodies can be used effectively as highly-specific and accurate biomarkers to diagnose AD throughout the course of the disease

    Time-resolved photoemission by attosecond streaking: extraction of time information

    Full text link
    Attosecond streaking of atomic photoemission holds the promise to provide unprecedented information on the release time of the photoelectron. We show that attosecond streaking phase shifts indeed contain timing (or spectral phase) information associated with the Eisenbud-Wigner-Smith time delay matrix of quantum scattering. However, this is only accessible if the influence of the streaking infrared (IR) field on the emission process is properly accounted for. The IR probe field can strongly modify the observed streaking phase shift. We show that the part of the phase shift ("time shift") due to the interaction between the outgoing electron and the combined Coulomb and IR laser fields can be described classically. By contrast, the strong initial-state dependence of the streaking phase shift is only revealed through the solution of the time-dependent Schr\"odinger equation in its full dimensionality. We find a time delay between the hydrogenic 2s and 2p initial states in He+ exceeding 20as for a wide range of IR intensities and XUV energies
    corecore