23,040 research outputs found
Frequencies and resonances around in the elliptic restricted three-body problem
The stability of the Lagrangian point is investigated in the elliptic
restricted three-body problem by using Floquet's theory. Stable and unstable
domains are determined in the parameter plane of the mass parameter and the
eccentricity by computing the characteristic exponents. Frequencies of motion
around have been determined both in the stable and unstable domains and
fitting functions for the frequencies are derived depending on the mass
parameter and the eccentricity. Resonances between the frequencies are studied
in the whole parameter plane. It is shown that the 1:1 resonances are not
restricted only to single curves but extend to the whole unstable domain. In
the unstable domains longer escape times of the test particle from the
neighbourhood of are related to certain resonances, but changing the
parameters the same resonances may lead to faster escape
QCD corrections to e+ e- --> 4 jets
We report on the next-to-leading order QCD calculation for e+ e- --> 4 jets.
We explain some modern techniques which have been used to calculate the
one-loop amplitudes efficiently. We further report on the general purpose
numerical program ``Mercutio'', which can be used to calculate any infrared
safe four-jet quantity in electron-positron annihilation at next-to-leading
order.Comment: 4 pages, talk given at the UK Phenomenology Workshop on Collider
Physics, Durham, 19-24 September 199
Deformation mechanics of deep surface flaw cracks
A combined analytical and experimental program was conducted to determine the deformation characteristics of deep surface cracks in Mode I loading. An approximate plane finite element analysis was performed to make a parameter study on the influence of crack depth, crack geometry, and stress level on plastic zones, crack opening displacement, and back surface dimpling in Fe-3Si steel and 2219-T87 aluminum. Surface replication and profiling techniques were used to examine back surface dimple configurations in 2219-T87 aluminum. Interferometry and holography were used to evaluate the potential of various optical techniques to detect small surface dimples on large surface areas
Semiclassical model for calculating fully differential ionization cross sections of the H molecule
Fully differential cross sections are calculated for the ionization of H
by fast charged projectiles using a semiclassical model developed previously
for the ionization of atoms. The method is tested in case of 4 keV electron and
6 MeV proton projectiles. The obtained results show good agreement with the
available experimental data. Interference effects due to the two-center
character of the target are also observed and analyzed.Comment: 11 pages, 4 figure
Group-theoretic models of the inversion process in bacterial genomes
The variation in genome arrangements among bacterial taxa is largely due to
the process of inversion. Recent studies indicate that not all inversions are
equally probable, suggesting, for instance, that shorter inversions are more
frequent than longer, and those that move the terminus of replication are less
probable than those that do not. Current methods for establishing the inversion
distance between two bacterial genomes are unable to incorporate such
information. In this paper we suggest a group-theoretic framework that in
principle can take these constraints into account. In particular, we show that
by lifting the problem from circular permutations to the affine symmetric
group, the inversion distance can be found in polynomial time for a model in
which inversions are restricted to acting on two regions. This requires the
proof of new results in group theory, and suggests a vein of new combinatorial
problems concerning permutation groups on which group theorists will be needed
to collaborate with biologists. We apply the new method to inferring distances
and phylogenies for published Yersinia pestis data.Comment: 19 pages, 7 figures, in Press, Journal of Mathematical Biolog
Változásban: munka és szabadidő 1984-2014 : Fogalmak, felfogások, és gyakorlatok magyarországi munkások körében
Nonlinear screening and stopping power in two-dimensional electron gases
We have used density functional theory to study the nonlinear screening
properties of a two-dimensional (2D) electron gas. In particular, we consider
the screening of an external static point charge of magnitude Z as a function
of the distance of the charge from the plane of the gas. The self-consistent
screening potentials are then used to determine the 2D stopping power in the
low velocity limit based on the momentum transfer cross-section. Calculations
as a function of Z establish the limits of validity of linear and quadratic
response theory calculations, and show that nonlinear screening theory already
provides significant corrections in the case of protons. In contrast to the 3D
situation, we find that the nonlinearly screened potential supports a bound
state even in the high density limit. This behaviour is elucidated with the
derivation of a high density screening theorem which proves that the screening
charge can be calculated perturbatively in the high density limit for arbitrary
dimensions. However, the theorem has particularly interesting implications in
2D where, contrary to expectations, we find that perturbation theory remains
valid even when the perturbing potential supports bound states.Comment: 23 pages, 15 figures in RevTeX
- …
