16,142 research outputs found
Simplified micromechanical equations for thermal residual stress analysis of coated fiber composites
The fabrication of metal matrix composites poses unique problems to the materials engineer. The large thermal expansion coefficient (CTE) mismatch between the fiber and matrix leads to high tensile residual stresses at the fiber/matrix (F/M) interface which could lead to premature matrix cracking during cooldown. Fiber coatings could be used to reduce thermal residual stresses. A simple closed form analysis, based on a three phase composite cylinder model, was developed to calculate thermal residual stresses in a fiber/interphase/matrix system. Parametric studies showed that the tensile thermal residual stresses at the F/M interface were very sensitive to the CTE and thickness of the interphase layer. The modulus of the layer had only a moderate effect on tensile residual stresses. For a silicon carbide titanium aluminide composite, the tangential stresses were 20 to 30 pct. larger than the axial stresses, over a wide range of interphase layer properties, indicating a tendency to form radial matrix cracks during cooldown. Guidelines for the selection of appropriate material properties of the fiber coating were also derived in order to minimize thermal residual stresses in the matrix during fabrication
A large magnetoinductance effect in La0.67Ba0.33MnO3
We report four probe impedance of La0.67Ba0.33MnO3 at f = 100 kHz under
different dc bias magnetic fields. The ac resistance (R) exhibits a peak around
Tp = 325 K which is accompanied by a rapid increase and a peak in the reactance
(X) in a zero field. The magnetoreactance exhibits a sharp peak close to Tp and
its magnitude (= 60% in H = 1 kG) exceeds that of the ac magnetoresistance (= 5
% inH = 1 kG). It is suggested that the magnetoreactance arises from changes in
the self inductance of the sample rather than the capacitance.Comment: 13 pages, 3 figures. accepted in Appl. Phys. Let
Positive and negative magnetocapacitance in magnetic nanoparticle systems
The dielectric properties of MnFeO and -FeO magnetic
nanoparticles embedded in insulating matrices were investigated. The samples
showed frequency dependent dielectric anomalies coincident with the magnetic
blocking temperature and significant magnetocapacitance above this blocking
temperature, as large as 0.4% at H = 10kOe. For both samples the magnetic field
induced change in dielectric constant was proportional to the square of the
sample magnetization. These measurements suggest that the dielectric properties
of magnetic nanoparticles are closely related to the disposition of magnetic
moments in the system. As neither bulk gamma-Fe2O3 nor MnFe2O3 are
magnetoelectric materials, this magnetodielectric coupling is believed to arise
from extrinsic effects which are discussed in light of recent work relating
magnetoresistive and magnetocapacitive behavior.Comment: 3 pages, 3 figure
Ply-level failure analysis of a graphite/epoxy laminate under bearing-bypass loading
A combined experimental and analytical study was conducted to investigate and predict the failure modes of a graphite/epoxy laminate subjected to combined bearing and bypass loading. Tests were conducted in a test machine that allowed the bearing-bypass load ratio to be controlled while a single-fastener coupon was loaded to failure in either tension or compression. Onset and ultimate failure modes and strengths were determined for each test case. The damage-onset modes were studied in detail by sectioning and micrographing the damaged specimens. A two-dimensional, finite-element analysis was conducted to determine lamina strains around the bolt hole. Damage onset consisted of matrix cracks, delamination, and fiber failures. Stiffness loss appeared to be caused by fiber failures rather than by matrix cracking and delamination. An unusual offset-compression mode was observed for compressive bearing-bypass laoding in which the specimen failed across its width along a line offset from the hole. The computed lamina strains in the fiber direction were used in a combined analytical and experimental approach to predict bearing-bypass diagrams for damage onset from a few simple tests
Environmental manipulations generate bidirectional shifts in both behavior and gene regulation in a crossbred mouse model of extremes in trait anxiety
Although gene-environment interactions are known to significantly influence psychopathology related disease states, only few animal models cover both the genetic background and environmental manipulations. Therefore, we have taken advantage of the bidirectionally inbred high (HAB) and low (LAB) anxiety-related behavior mouse lines to generate HAB x LAB F1 hybrids that intrinsically carry both lines' genetic characteristics, and subsequently raised them in three different environments standard, enriched (EE) and chronic mild stress (CMS). Assessing genetic correlates of trait anxiety, we focused on two genes already known to play a role in HAB vs. LAB mice, corticotropin releasing hormone receptor type 1 (Crhr1) and high mobility group nucleosomal binding domain 3 (Hmgn3). While EE F1 mice showed decreased anxiety related and increased explorative behaviors compared to controls, CMS sparked effects in the opposite direction. However, environmental treatments affected the expression of the two genes in distinct ways. Thus, while expression ratios of Hmgn3 between the HAB- and LAB-specific alleles remained equal, total expression resembled the one observed in HAB vs. LAB mice, i.e., decreased after EE and increased after CMS treatment. On the other hand, while total expression of Crhr1 remained unchanged between the groups, the relative expression of HAB- and LAB-specific alleles showed a clear effect following the environmental modifications. Thus, the environmentally driven bidirectional shift of trait anxiety in this F1 model strongly correlated with Hmgn3 expression, irrespective of allele-specific expression patterns that retained the proportions of basic differential HAB vs. LAB expression, making this gene a match for environment-induced modifications. An involvement of Crhr1 in the bidirectional behavioral shift could, however, rather be due to different effects of the HAB- and LAB specific alleles described here. Both candidate genes therefore deserve attention in the complex regulation of anxiety-related phenotypes including environment-mediated effects
Fracture mechanics analysis for various fiber/matrix interface loadings
Fiber/matrix (F/M) cracking was analyzed to provide better understanding and guidance in developing F/M interface fracture toughness tests. Two configurations, corresponding to F/M cracking at a broken fiber and at the free edge, were investigated. The effects of mechanical loading, thermal cooldown, and friction were investigated. Each configuration was analyzed for two loadings: longitudinal and normal to the fiber. A nonlinear finite element analysis was performed to model friction and slip at the F/M interface. A new procedure for fitting a square-root singularity to calculated stresses was developed to determine stress intensity factors (K sub I and K sub II) for a bimaterial interface crack. For the case of F/M cracking at a broken fiber with longitudinal loading, crack tip conditions were strongly influenced by interface friction. As a result, an F/M interface toughness test based on this case was not recommended because nonlinear data analysis methods would be required. For the free edge crack configuration, both mechanical and thermal loading caused crack opening, thereby avoiding frictional effects. A F/M interface toughness test based on this configuration would provide data for K(sub I)/K(sub II) ratios of about 0.7 and 1.6 for fiber and radial normal loading, respectively. However, thermal effects must be accounted for in the data analysis
- …
