179 research outputs found
THE REFORM OF RICE MILLING AND MARKETING IN THE OFFICE DU NIGER: CATALYST FOR AN AGRICULTURAL SUCCESS STORY IN MALI
This chapter focuses on how changes in the rules regarding who could compete in rice milling in the ON combined with technological change in rice production and new macro-economic policies (particularly the CFA franc devaluation) to lead to a transformation of rice production and marketing in the ON. The chapter also pays particular attention to the synergies between technological changes in rice production, the introduction of new marketing and macroeconomic policies, and the evolution of institutions governing rice production in the ON on the transformation of agriculture in this region of Mali.Crop Production/Industries, Marketing,
Atomic resolution structure of serine protease proteinase K at ambient temperature
Atomic resolution structures (beyond 1.20 ?) at ambient temperature, which is usually hampered by the radiation damage in synchrotron X-ray crystallography (SRX), will add to our understanding of the structure-function relationships of enzymes. Serial femtosecond crystallography (SFX) has attracted surging interest by providing a route to bypass such challenges. Yet the progress on atomic resolution analysis with SFX has been rather slow. In this report, we describe the 1.20 ? resolution structure of proteinase K using 13 keV photon energy. Hydrogen atoms, water molecules, and a number of alternative side-chain conformations have been resolved. The increase in the value of B-factor in SFX suggests that the residues and water molecules adjacent to active sites were flexible and exhibited dynamic motions at specific substrate-recognition sites. ? 2017 The Author(s).114Ysciescopu
Hydroxyethyl cellulose matrix applied to serial crystallography
Serial femtosecond crystallography (SFX) allows structures of proteins to be determined at room temperature with minimal radiation damage. A highly viscous matrix acts as a crystal carrier for serial sample loading at a low flow rate that enables the determination of the structure, while requiring consumption of less than 1 mg of the sample. However, a reliable and versatile carrier matrix for a wide variety of protein samples is still elusive. Here we introduce a hydroxyethyl cellulose-matrix carrier, to determine the structure of three proteins. The de novo structure determination of proteinase K from single-wavelength anomalous diffraction (SAD) by utilizing the anomalous signal of the praseodymium atom was demonstrated using 3,000 diffraction images. ? 2017 The Author(s).113Ysciescopu
Optimizing and evaluating protein microcrystallography experiments: strengths and weaknesses of X-rays and electrons
Recently, significant technological innovations have enabled the measurement of both X-ray and electron diffraction from protein microcrystals. These new microcrystallography experiments are useful when large crystals cannot be obtained, but also in other cases, such as when large crystals suffer from long-range disorder, or when uniform perturbations need to be applied rapidly to the entire crystal volume.
Optimizing the preparation of protein microcrystals for this new class of experiments presents new challenges for crystallographers, who have traditionally sought to grow
large, single crystals. To better understand these new challenges, we optimized the production of microcrystalline samples of cyclophilin A (CypA), starting from conditions that produced millimeter scale crystals. Next, we used these microcrystals to determine CypA structures by serial femtosecond crystallography (SFX) at two XFEL lightsources,
and by microcrystal electron diffraction (microED) in an electron cryomicroscope. Here, I will present our optimization strategy for protein microcrystallization, and compare the results of X-ray and electron microcrystallography experiments with CypA. I will focus on
the unique caveats of sample delivery for each method, and compare the resulting structures. The goal will be to provide insight into which microcrystallography experiment is most appropriate for which types of samples, and to share our experience with sample preparation and delivery for each type of experiment
The genetic architecture of branched-chain amino acid accumulation in tomato fruits
Previous studies of the genetic architecture of fruit metabolic composition have allowed us to identify four strongly conserved co-ordinate quantitative trait loci (QTL) for the branched-chain amino acids (BCAAs). This study has been extended here to encompass the other 23 enzymes described to be involved in the pathways of BCAA synthesis and degradation. On coarse mapping the chromosomal location of these enzymes, it was possible to define the map position of 24 genes. Of these genes eight co-localized, or mapped close to BCAA QTL including those encoding ketol-acid reductoisomerase (KARI), dihydroxy-acid dehydratase (DHAD), and isopropylmalate dehydratase (IPMD). Quantitative evaluation of the expression levels of these genes revealed that the S. pennellii allele of IPMD demonstrated changes in the expression level of this gene, whereas those of KARI and DHAD were invariant across the genotypes. Whilst the antisense inhibition of IPMD resulted in increased BCAA, the antisense inhibition of neither KARI nor DHAD produced a clear effect in fruit BCAA contents. The results are discussed both with respect to the roles of these specific enzymes within plant amino acid metabolism and within the context of current understanding of the regulation of plant branched-chain amino acid metabolism
Self-assembled monolayer of light-harvesting core complexes of photosynthetic bacteria on an amino-terminated ITO electrode
Light-harvesting antenna core (LH1-RC) complexes isolated from Rhodospirillum rubrum and Rhodopseudomonas palustris were successfully self-assembled on an ITO electrode modified with 3-aminopropyltriethoxysilane. Near infra-red (NIR) absorption, fluorescence, and IR spectra of these LH1-RC complexes indicated that these LH1-RC complexes on the electrode were stable on the electrode. An efficient energy transfer and photocurrent responses of these LH1-RC complexes on the electrode were observed upon illumination of the LH1 complex at 880 nm
Oil-free hyaluronic acid matrix for serial femtosecond crystallography
The grease matrix was originally introduced as a microcrystal-carrier for serial femtosecond crystallography and has been expanded to applications for various types of proteins, including membrane proteins. However, the grease-based matrix has limited application for oil-sensitive proteins. Here we introduce a grease-free, water-based hyaluronic acid matrix. Applications for proteinase K and lysozyme proteins were able to produce electron density maps at 2.3-angstrom resolution.open111011sciescopu
Native sulfur/chlorine SAD phasing for serial femtosecond crystallography
Serial femtosecond crystallography (SFX) allows structures to be determined with minimal radiation damage. However, phasing native crystals in SFX is not very common. Here, the structure determination of native lysozyme from single-wavelength anomalous diffraction (SAD) by utilizing the anomalous signal of sulfur and chlorine at a wavelength of 1.77 angstrom is successfully demonstrated. This sulfur SAD method can be applied to a wide range of proteins, which will improve the determination of native crystal structures.open112633sciescopu
A qualitative study on the background of long-term maintenance patients at a private Japanese dental clinic
Light-induced structural changes and the site of O=O bond formation in PSII caught by XFEL
Photosystem II (PSII) is a huge membrane-protein complex consisting of 20 different subunits with a total molecular mass of 350 kDa for a monomer. It catalyses light-driven water oxidation at its catalytic centre, the oxygen-evolving complex (OEC). The structure of PSII has been analysed at 1.9 Å resolution by synchrotron radiation X-rays, which revealed that the OEC is a Mn4CaO5 cluster organized in an asymmetric, 'distorted-chair' form. This structure was further analysed with femtosecond X-ray free electron lasers (XFEL), providing the 'radiation damage-free' structure. The mechanism of O=O bond formation, however, remains obscure owing to the lack of intermediate-state structures. Here we describe the structural changes in PSII induced by two-flash illumination at room temperature at a resolution of 2.35 Å using time-resolved serial femtosecond crystallography with an XFEL provided by the SPring-8 ångström compact free-electron laser. An isomorphous difference Fourier map between the two-flash and dark-adapted states revealed two areas of apparent changes: around the QB/non-haem iron and the Mn4CaO5 cluster. The changes around the QB/non-haem iron region reflected the electron and proton transfers induced by the two-flash illumination. In the region around the OEC, a water molecule located 3.5 Å from the Mn4CaO5 cluster disappeared from the map upon two-flash illumination. This reduced the distance between another water molecule and the oxygen atom O4, suggesting that proton transfer also occurred. Importantly, the two-flash-minus-dark isomorphous difference Fourier map showed an apparent positive peak around O5, a unique μ4-oxo-bridge located in the quasi-centre of Mn1 and Mn4 (refs 4,5). This suggests the insertion of a new oxygen atom (O6) close to O5, providing an O=O distance of 1.5 Å between these two oxygen atoms. This provides a mechanism for the O=O bond formation consistent with that proposed previousl
- …
