1,781 research outputs found
Time exponentiation of a Wilson loop for Yang-Mills theories in 2+\epsilon dimensions
A rectangular Wilson loop centered at the origin, with sides parallel to
space and time directions and length and respectively, is
perturbatively evaluated in Feynman gauge for Yang--Mills
theory in dimensions. When , there is a dependence on the
dimensionless ratio , besides the area. In the limit ,
keeping , the leading expression of the loop involves only the Casimir
constant of the fundamental representation and is thereby in agreement
with the expected Abelian-like time exponentiation (ALTE). At the result
depends also on , the Casimir constant of the adjoint representation and a
pure area law behavior is recovered, but no agreement with ALTE in the limit
. Consequences of these results concerning two and
higher-dimensional gauge theories are pointed out.Comment: RevTex, 28 pages, two figure files include
4-Formyl-2-nitrophenyl 3-nitro-2-methylbenzoate
In the title formyl nitro aryl benzoate derivative, CH NO, the benzene rings form a dihedral angle of 4.96(3)°. The mean plane of the central ester group, C-O-C-(=O)-C (r.m.s. deviation = 0.0484Å), is twisted away from the formyl nitro aryl and benzoate rings by 46.61(5) and 49.93(5)°, respectively. In the crystal, the molecules are packed forming C-H⋯O interactions in chains which propagate along [010]. Edge-fused R 3(15) rings are generated along this direction
First principle theory of correlated transport through nano-junctions
We report the inclusion of electron-electron correlation in the calculation
of transport properties within an ab initio scheme. A key step is the
reformulation of Landauer's approach in terms of an effective transmittance for
the interacting electron system. We apply this framework to analyze the effect
of short range interactions on Pt atomic wires and discuss the coherent and
incoherent correction to the mean-field approach.Comment: 5 pages, 3 figure
Observing The Mediterranean Sea from space: 21 years of Pathfinder-AVHRR Sea Surface Temperatures (1985 to 2005). Re-analysis and validation
International audienceThe time series of satellite infrared AVHRR data from 1985 to 2005 has been used to produce a daily series of optimally interpolated SST maps over the regular grid of the operational MFSTEP OGCM model of the Mediterranean basin. A complete validation of this OISST (Optimally Interpolated Sea Surface Temperature) product with in situ measurements has been performed in order to exclude any possibility of spurious trends due to instrumental calibration errors/shifts or algorithms malfunctioning related to local geophysical factors. The validation showed that satellite OISST is able to reproduce in situ measurements with a mean bias of less than 0.1°C and RMSE of about 0.5°C and that errors do not drift with time or with the percent interpolation error
Torsional response and stiffening of individual multi-walled carbon nanotubes
We report on the characterization of torsional oscillators which use
multi-walled carbon nanotubes as the spring elements. Through
atomic-force-microscope force-distance measurements we are able to apply
torsional strains to the nanotubes and measure their torsional spring constants
and effective shear moduli. We find that the effective shear moduli cover a
broad range, with the largest values near the theoretically predicted value.
The data also suggest that the nanotubes are stiffened by repeated flexing.Comment: 4 page
Macroscopic polarization and band offsets at nitride heterojunctions
Ab initio electronic structure studies of prototypical polar interfaces of
wurtzite III-V nitrides show that large uniform electric fields exist in
epitaxial nitride overlayers, due to the discontinuity across the interface of
the macroscopic polarization of the constituent materials. Polarization fields
forbid a standard evaluation of band offsets and formation energies: using new
techniques, we find a large forward-backward asymmetry of the offset (0.2 eV
for AlN/GaN (0001), 0.85 eV for GaN/AlN (0001)), and tiny interface formation
energies.Comment: RevTeX 4 pages, 2 figure
Path-Fault-Tolerant Approximate Shortest-Path Trees
Let be an -nodes non-negatively real-weighted undirected graph.
In this paper we show how to enrich a {\em single-source shortest-path tree}
(SPT) of with a \emph{sparse} set of \emph{auxiliary} edges selected from
, in order to create a structure which tolerates effectively a \emph{path
failure} in the SPT. This consists of a simultaneous fault of a set of at
most adjacent edges along a shortest path emanating from the source, and it
is recognized as one of the most frequent disruption in an SPT. We show that,
for any integer parameter , it is possible to provide a very sparse
(i.e., of size ) auxiliary structure that carefully
approximates (i.e., within a stretch factor of ) the true
shortest paths from the source during the lifetime of the failure. Moreover, we
show that our construction can be further refined to get a stretch factor of
and a size of for the special case , and that it can be
converted into a very efficient \emph{approximate-distance sensitivity oracle},
that allows to quickly (even in optimal time, if ) reconstruct the
shortest paths (w.r.t. our structure) from the source after a path failure,
thus permitting to perform promptly the needed rerouting operations. Our
structure compares favorably with previous known solutions, as we discuss in
the paper, and moreover it is also very effective in practice, as we assess
through a large set of experiments.Comment: 21 pages, 3 figures, SIROCCO 201
A mesoscopic ring as a XNOR gate: An exact result
We describe XNOR gate response in a mesoscopic ring threaded by a magnetic
flux . The ring is attached symmetrically to two semi-infinite
one-dimensional metallic electrodes and two gate voltages, viz, and
, are applied in one arm of the ring which are treated as the inputs of
the XNOR gate. The calculations are based on the tight-binding model and the
Green's function method, which numerically compute the conductance-energy and
current-voltage characteristics as functions of the ring-to-electrode coupling
strength, magnetic flux and gate voltages. Our theoretical study shows that,
for a particular value of () (, the elementary
flux-quantum), a high output current (1) (in the logical sense) appears if both
the two inputs to the gate are the same, while if one but not both inputs are
high (1), a low output current (0) results. It clearly exhibits the XNOR gate
behavior and this aspect may be utilized in designing an electronic logic gate.Comment: 8 pages, 5 figure
- …
