1,781 research outputs found

    Time exponentiation of a Wilson loop for Yang-Mills theories in 2+\epsilon dimensions

    Full text link
    A rectangular Wilson loop centered at the origin, with sides parallel to space and time directions and length 2L2L and 2T2T respectively, is perturbatively evaluated O(g4){\cal O}(g^4) in Feynman gauge for Yang--Mills theory in 1+(D1)1+(D-1) dimensions. When D>2D>2, there is a dependence on the dimensionless ratio L/TL/T, besides the area. In the limit TT \to \infty, keeping D>2D>2, the leading expression of the loop involves only the Casimir constant CFC_F of the fundamental representation and is thereby in agreement with the expected Abelian-like time exponentiation (ALTE). At D=2D= 2 the result depends also on CAC_A, the Casimir constant of the adjoint representation and a pure area law behavior is recovered, but no agreement with ALTE in the limit TT\to\infty. Consequences of these results concerning two and higher-dimensional gauge theories are pointed out.Comment: RevTex, 28 pages, two figure files include

    4-Formyl-2-nitrophenyl 3-nitro-2-methylbenzoate

    Get PDF
    In the title formyl nitro aryl benzoate derivative, CH NO, the benzene rings form a dihedral angle of 4.96(3)°. The mean plane of the central ester group, C-O-C-(=O)-C (r.m.s. deviation = 0.0484Å), is twisted away from the formyl nitro aryl and benzoate rings by 46.61(5) and 49.93(5)°, respectively. In the crystal, the molecules are packed forming C-H⋯O interactions in chains which propagate along [010]. Edge-fused R 3(15) rings are generated along this direction

    First principle theory of correlated transport through nano-junctions

    Get PDF
    We report the inclusion of electron-electron correlation in the calculation of transport properties within an ab initio scheme. A key step is the reformulation of Landauer's approach in terms of an effective transmittance for the interacting electron system. We apply this framework to analyze the effect of short range interactions on Pt atomic wires and discuss the coherent and incoherent correction to the mean-field approach.Comment: 5 pages, 3 figure

    Observing The Mediterranean Sea from space: 21 years of Pathfinder-AVHRR Sea Surface Temperatures (1985 to 2005). Re-analysis and validation

    No full text
    International audienceThe time series of satellite infrared AVHRR data from 1985 to 2005 has been used to produce a daily series of optimally interpolated SST maps over the regular grid of the operational MFSTEP OGCM model of the Mediterranean basin. A complete validation of this OISST (Optimally Interpolated Sea Surface Temperature) product with in situ measurements has been performed in order to exclude any possibility of spurious trends due to instrumental calibration errors/shifts or algorithms malfunctioning related to local geophysical factors. The validation showed that satellite OISST is able to reproduce in situ measurements with a mean bias of less than 0.1°C and RMSE of about 0.5°C and that errors do not drift with time or with the percent interpolation error

    Torsional response and stiffening of individual multi-walled carbon nanotubes

    Get PDF
    We report on the characterization of torsional oscillators which use multi-walled carbon nanotubes as the spring elements. Through atomic-force-microscope force-distance measurements we are able to apply torsional strains to the nanotubes and measure their torsional spring constants and effective shear moduli. We find that the effective shear moduli cover a broad range, with the largest values near the theoretically predicted value. The data also suggest that the nanotubes are stiffened by repeated flexing.Comment: 4 page

    Macroscopic polarization and band offsets at nitride heterojunctions

    Full text link
    Ab initio electronic structure studies of prototypical polar interfaces of wurtzite III-V nitrides show that large uniform electric fields exist in epitaxial nitride overlayers, due to the discontinuity across the interface of the macroscopic polarization of the constituent materials. Polarization fields forbid a standard evaluation of band offsets and formation energies: using new techniques, we find a large forward-backward asymmetry of the offset (0.2 eV for AlN/GaN (0001), 0.85 eV for GaN/AlN (0001)), and tiny interface formation energies.Comment: RevTeX 4 pages, 2 figure

    Path-Fault-Tolerant Approximate Shortest-Path Trees

    Full text link
    Let G=(V,E)G=(V,E) be an nn-nodes non-negatively real-weighted undirected graph. In this paper we show how to enrich a {\em single-source shortest-path tree} (SPT) of GG with a \emph{sparse} set of \emph{auxiliary} edges selected from EE, in order to create a structure which tolerates effectively a \emph{path failure} in the SPT. This consists of a simultaneous fault of a set FF of at most ff adjacent edges along a shortest path emanating from the source, and it is recognized as one of the most frequent disruption in an SPT. We show that, for any integer parameter k1k \geq 1, it is possible to provide a very sparse (i.e., of size O(knf1+1/k)O(kn\cdot f^{1+1/k})) auxiliary structure that carefully approximates (i.e., within a stretch factor of (2k1)(2F+1)(2k-1)(2|F|+1)) the true shortest paths from the source during the lifetime of the failure. Moreover, we show that our construction can be further refined to get a stretch factor of 33 and a size of O(nlogn)O(n \log n) for the special case f=2f=2, and that it can be converted into a very efficient \emph{approximate-distance sensitivity oracle}, that allows to quickly (even in optimal time, if k=1k=1) reconstruct the shortest paths (w.r.t. our structure) from the source after a path failure, thus permitting to perform promptly the needed rerouting operations. Our structure compares favorably with previous known solutions, as we discuss in the paper, and moreover it is also very effective in practice, as we assess through a large set of experiments.Comment: 21 pages, 3 figures, SIROCCO 201

    A mesoscopic ring as a XNOR gate: An exact result

    Full text link
    We describe XNOR gate response in a mesoscopic ring threaded by a magnetic flux ϕ\phi. The ring is attached symmetrically to two semi-infinite one-dimensional metallic electrodes and two gate voltages, viz, VaV_a and VbV_b, are applied in one arm of the ring which are treated as the inputs of the XNOR gate. The calculations are based on the tight-binding model and the Green's function method, which numerically compute the conductance-energy and current-voltage characteristics as functions of the ring-to-electrode coupling strength, magnetic flux and gate voltages. Our theoretical study shows that, for a particular value of ϕ\phi (=ϕ0/2=\phi_0/2) (ϕ0=ch/e\phi_0=ch/e, the elementary flux-quantum), a high output current (1) (in the logical sense) appears if both the two inputs to the gate are the same, while if one but not both inputs are high (1), a low output current (0) results. It clearly exhibits the XNOR gate behavior and this aspect may be utilized in designing an electronic logic gate.Comment: 8 pages, 5 figure
    corecore