4,144 research outputs found
The implications of resonant x-ray scattering data on the physics of the insulating phase of V_2O_3
We have performed a quantitative analysis of recent resonant x-ray scattering
experiments carried out in the antiferromagnetic phase of V_2O_3 by means of
numerical ab-initio simulations. In order to treat magnetic effects, we have
developed a method based on multiple scattering theory (MST) and a relativistic
extension of the Schr\"{o}dinger Equation, thereby working with the usual non
relativistic set of quantum numbers for angular and spin momenta.
Electric dipole-dipole (E1-E1), dipole-quadrupole (E1-E2) and
quadrupole-quadrupole (E2-E2) transition were considered altogether. We obtain
satisfactory agreement with experiments, both in energy and azimuthal scans.
All the main features of the V K edge Bragg-forbidden reflections with
odd can be interpreted in terms of the antiferromagnetic ordering only,
{\it ie}, they are of magnetic origin. In particular the ab-initio simulation
of the energy scan around the (1,1,1)-monoclinic reflection excludes the
possibility of any symmetry reduction due to a time-reversal breaking induced
by orbital ordering.Comment: 11 pages, 6 figure
Spin-1 effective Hamiltonian with three degenerate orbitals: An application to the case of V_2O_3
Motivated by recent neutron and x-ray observations in V_2O_3, we derive the
effective Hamiltonian in the strong coupling limit of an Hubbard model with
three degenerate t_{2g} states containing two electrons coupled to spin S = 1,
and use it to re-examine the low-temperature ground-state properties of this
compound. An axial trigonal distortion of the cubic states is also taken into
account. Since there are no assumptions about the symmetry properties of the
hopping integrals involved, the resulting spin-orbital Hamiltonian can be
generally applied to any crystallographic configuration of the transition metal
ion giving rise to degenerate t_{2g} orbitals. Specializing to the case of
V_2O_3 we consider the antiferromagnetic insulating phase. We find two
variational regimes, depending on the relative size of the correlation energy
of the vertical pairs and the in-plane interaction energy. The former favors
the formation of stable molecules throughout the crystal, while the latter
tends to break this correlated state. We determine in both cases the minimizing
orbital solutions for various spin configurations, and draw the corresponding
phase diagrams. We find that none of the symmetry-breaking stable phases with
the real spin structure presents an orbital ordering compatible with the
magnetic space group indicated by very recent observations of non-reciprocal
x-ray gyrotropy in V_2O_3. We do however find a compatible solution with very
small excitation energy in two distinct regions of the phase space, which might
turn into the true ground state of V_2O_3 due to the favorable coupling with
the lattice. We illustrate merits and drawbacks of the various solutions and
discuss them in relation to the present experimental evidence.Comment: 36 pages, 19 figure
Variational study of the antiferromagnetic insulating phase of V2O3 based on Nth order Muffin-Tin-Orbitals
Motivated by recent results of th order muffin-tin orbital (NMTO)
implementation of the density functional theory (DFT), we re-examine
low-temperature ground-state properties of the anti-ferromagnetic insulating
phase of vanadium sesquioxide VO. The hopping matrix elements obtained
by the NMTO-downfolding procedure differ significantly from those previously
obtained in electronic structure calculations and imply that the in-plane
hopping integrals are as important as the out-of-plane ones. We use the NMTO
hopping matrix elements as input and perform a variational study of the ground
state. We show that the formation of stable molecules throughout the crystal is
not favorable in this case and that the experimentally observed magnetic
structure can still be obtained in the atomic variational regime. However the
resulting ground state (two electrons occupying the degenerate
doublet) is in contrast with many well established experimental observations.
We discuss the implications of this finding in the light of the non-local
electronic correlations certainly present in this compound.Comment: 7 pages, 2 figure
Structural dichroism in the antiferromagnetic insulating phase of V_2O_3
We performed near-edge x-ray absorption spectroscopy (XANES) at V K edge in
the antiferromagnetic insulating (AFI) phase of a 2.8% Cr-doped V_2O_3 single
crystal. Linear dichroism of several percent is measured in the hexagonal plane
and found to be in good agreement with ab-initio calculations based on multiple
scattering theory. This experiment definitively proves the structural origin of
the signal and therefore solves a controversy raised by previous
interpretations of the same dichroism as non-reciprocal. It also calls for a
further investigation of the role of the magnetoelectric annealing procedure in
cooling to the AFI phase.Comment: 4 pages 3 figures. To be published in Phys. Rev. B (2005
Experimental evidence of thermal fluctuations on the X-ray absorption near-edge structure at the aluminum K-edge
After a review of temperature-dependent experimental x-ray absorption
near-edge structure (XANES) and related theoretical developments, we present
the Al K-edge XANES spectra of corundum and beryl for temperature ranging from
300K to 930K. These experimental results provide a first evidence of the role
of thermal fluctuation in XANES at the Al K-edge especially in the pre-edge
region. The study is carried out by polarized XANES measurements of single
crystals. For any orientation of the sample with respect to the x-ray beam, the
pre-edge peak grows and shifts to lower energy with temperature. In addition
temperature induces modifications in the position and intensities of the main
XANES features. First-principles DFT calculations are performed for both
compounds. They show that the pre-edge peak originates from forbidden 1s to 3s
transitions induced by vibrations. Three existing theoretical models are used
to take vibrations into account in the absorption cross section calculations:
i) an average of the XANES spectra over the thermal displacements of the
absorbing atom around its equilibrium position, ii) a method based on the crude
Born-Oppenheimer approximation where only the initial state is averaged over
thermal displacements, iii) a convolution of the spectra obtained for the atoms
at the equilibrium positions with an approximate phonon spectral function. The
theoretical spectra so obtained permit to qualitatively understand the origin
of the spectral modifications induced by temperature. However the correct
treatment of thermal fluctuation in XANES spectroscopy requires more
sophisticated theoretical tools
Role of the exchange and correlation potential into calculating the x-ray absorption spectra of half-metallic alloys: the case of Mn and Cu K-edge XANES in CuMnM (M = Al, Sn, In) Heusler alloys
This work reports a theoretical study of the x-ray absorption near-edge
structure spectra at both the Cu and the Mn K-edge in several CuMnM (M= Al,
Sn and In) Heusler alloys. Our results show that {\it ab-initio} single-channel
multiple-scattering calculations are able of reproducing the experimental
spectra. Moreover, an extensive discussion is presented concerning the role of
the final state potential needed to reproduce the experimental data of these
half-metallic alloys. In particular, the effects of the cluster-size and of the
exchange and correlation potential needed in reproducing all the experimental
XANES features are discussed.Comment: 15 pages, 5 figure
X-ray absorption spectra of graphene and graphene oxide by full-potential multiple scattering calculations with self-consistent charge density
International audienceThe x-ray absorption near-edge structure of graphene, graphene oxide, and diamond is studied by the recently developed real-space full potential multiple scattering (FPMS) theory with space-filling cells. It is shown how accurate potentials for FPMS can be generated from self-consistent charge densities obtained with other schemes, especially the projector augmented wave method. Compared to standard multiple scattering calculations in the muffin-tin approximation, FPMS gives much better agreement with experiment. The effects of various structural modifications on the graphene spectra are well reproduced. (1) Stacking of graphene layers increases the peak intensity in the higher energy region. (2) The spectrum of the C atom located at the edge of a graphene sheet shows a prominent pre-edge structure. (3) Adsorption of oxygen gives rise to the so-called interlayer-state peak. Moreover, O K-edge spectra of graphene oxide are calculated for three types of bonding, C-OH, C-O-C, and C-O, and the proportions of these bondings at 800∘C are deduced by fitting them to the experimental spectru
- …
