3,159 research outputs found
On "jamitons," self-sustained nonlinear traffic waves
"Phantom jams," traffic blockages that arise without apparent cause, have
long frustrated transportation scientists. Herein, we draw a novel homology
between phantom jams and a related class of self-sustained transonic waves,
namely detonations. Through this analogy, we describe the jam structure;
favorable agreement with reported measurements from congested highways is
observed. Complementary numerical simulations offer insights into the jams'
development. Our results identify conditions likely to result in a dangerous
concentration of vehicles and thereby lend guidance in traffic control and
roadway design.Comment: 6 pages, 4 figure
Fe I Oscillator Strengths for the Gaia-ESO Survey
The Gaia-ESO Public Spectroscopic Survey (GES) is conducting a large-scale
study of multi-element chemical abundances of some 100 000 stars in the Milky
Way with the ultimate aim of quantifying the formation history and evolution of
young, mature and ancient Galactic populations. However, in preparing for the
analysis of GES spectra, it has been noted that atomic oscillator strengths of
important Fe I lines required to correctly model stellar line intensities are
missing from the atomic database. Here, we present new experimental oscillator
strengths derived from branching fractions and level lifetimes, for 142
transitions of Fe I between 3526 {\AA} and 10864 {\AA}, of which at least 38
are urgently needed by GES. We also assess the impact of these new data on
solar spectral synthesis and demonstrate that for 36 lines that appear
unblended in the Sun, Fe abundance measurements yield a small line-by-line
scatter (0.08 dex) with a mean abundance of 7.44 dex in good agreement with
recent publications.Comment: Accepted for publication in Mon. Not. R. Astron. So
A Variational Monte Carlo Study of the Current Carried by a Quasiparticle
With the use of Gutzwiller-projected variational states, we study the
renormalization of the current carried by the quasiparticles in
high-temperature superconductors and of the quasiparticle spectral weight. The
renormalization coefficients are computed by the variational Monte Carlo
technique, under the assumption that quasiparticle excitations may be described
by Gutzwiller-projected BCS quasiparticles. We find that the current
renormalization coefficient decreases with decreasing doping and tends to zero
at zero doping. The quasiparticle spectral weight Z_+ for adding an electron
shows an interesting structure in k space, which corresponds to a depression of
the occupation number k just outside the Fermi surface. The perturbative
corrections to those quantities in the Hubbard model are also discussed.Comment: 9 pages, 9 figure
Demyelination and axonal preservation in a transgenic mouse model of Pelizaeus-Merzbacher disease
It is widely thought that demyelination contributes to the degeneration of axons and, in combination with acute inflammatory injury, is responsible for progressive axonal loss and persistent clinical disability in inflammatory demyelinating disease. In this study we sought to characterize the relationship between demyelination, inflammation and axonal transport changes using a Plp1-transgenic mouse model of Pelizaeus-Merzbacher disease. In the optic pathway of this non-immune mediated model of demyelination, myelin loss progresses from the optic nerve head towards the brain, over a period of months. Axonal transport is functionally perturbed at sites associated with local inflammation and 'damaged' myelin. Surprisingly, where demyelination is complete, naked axons appear well preserved despite a significant reduction of axonal transport. Our results suggest that neuroinflammation and/or oligodendrocyte dysfunction are more deleterious for axonal health than demyelination per se, at least in the short ter
A Correction Function Method for Poisson problems with interface jump conditions
In this paper we present a method to treat interface jump conditions for constant coefficients Poisson problems that allows the use of standard “black box” solvers, without compromising accuracy. The basic idea of the new approach is similar to the Ghost Fluid Method (GFM). The GFM relies on corrections applied on nodes located across the interface for discretization stencils that straddle the interface. If the corrections are solution-independent, they can be moved to the right-hand-side (RHS) of the equations, producing a problem with the same linear system as if there were no jumps, only with a different RHS. However, achieving high accuracy is very hard (if not impossible) with the “standard” approaches used to compute the GFM correction terms.
In this paper we generalize the GFM correction terms to a correction function, defined on a band around the interface. This function is then shown to be characterized as the solution to a PDE, with appropriate boundary conditions. This PDE can, in principle, be solved to any desired order of accuracy. As an example, we apply this new method to devise a 4th order accurate scheme for the constant coefficients Poisson equation with discontinuities in 2D. This scheme is based on (i) the standard 9-point stencil discretization of the Poisson equation, (ii) a representation of the correction function in terms of bicubics, and (iii) a solution of the correction function PDE by a least squares minimization. Several applications of the method are presented to illustrate its robustness dealing with a variety of interface geometries, its capability to capture sharp discontinuities, and its high convergence rate.National Science Foundation (U.S.) (Grant DMS-0813648)Brazil. Coordenacao de Aperfeicoamento de Pessoal de Nivel SuperiorFulbright Program (Grant BEX 2784/06-8
Interferometric measurement of resonance transition wavelengths in C IV, Si IV, Al III, Al II, and Si II
We have made the first interferomeric measurements of the wavelengths of the
important ultraviolet diagnostic lines in the spectra \ion{C}{4} near 155 nm
and \ion{Si}{4} near 139 nm with a vacuum ultraviolet Fourier transform
spectrometer and high-current discharge sources. The wavelength uncertainties
were reduced by one order of magnitude for the \ion{C}{4} lines and by two
orders of magnitude for the \ion{Si}{4} lines. Our measurements also provide
accurate wavelengths for resonance transitions in \ion{Al}{3}, \ion{Al}{2}, and
\ion{Si}{2}.Comment: 6 pages, 2 figures, 1 tabl
Nutritive value and physical characteristics of Xaraes palisadegrass as affected by grazing strategy
The aim of this study was to ascertain whether the defoliation frequency based on a fixed rest period would generate variable sward structural and physiological conditions at each subsequent grazing event. The relative importance of the physiological age was established in comparison with the chronological age in the determination of the forage nutritive value of Xaraes palisadegrass [Brachiaria brizantha (Hochst ex A. RICH.) STAPF. cv. Xaraes]. Two grazing frequencies were defined by light interception (LI) at initiation of grazing (95% LI - ""target grazing"" [TG] or 100% LI - ""delayed grazing"" [DG]) and one based on chronological time, grazing every 28 days (28-d). Forage produced under the TG schedule was mostly leaves (93%) with a higher concentration of crude protein (CP; 138 g/kg in the whole forage), a lower concentrations of neutral detergent fibre (NDF) in the stems (740 g/kg), and higher in vitro dry matter digestibility (IVDMD) of the leaves (690 g/kg), compared to the other treatments. Lower grazing frequency strategies (DG and 28-d) resulted in forage with higher proportions of stems (10 and 9%, respectively). Strategies based on light interception did not produce pre-graze forage with a uniform nutritive value, as the indicators varied across grazing cycles. The treatment based on fixed days of rest did not result in uniformity.FAPESP (Fundacao de Amparo a Pesquisa do Estado de Sao Paulo
Equilibrium and out of equilibrium thermodynamics in supercooled liquids and glasses
We review the inherent structure thermodynamical formalism and the
formulation of an equation of state for liquids in equilibrium based on the
(volume) derivatives of the statistical properties of the potential energy
surface. We also show that, under the hypothesis that during aging the system
explores states associated to equilibrium configurations, it is possible to
generalize the proposed equation of state to out-of-equilibrium conditions. The
proposed formulation is based on the introduction of one additional parameter
which, in the chosen thermodynamic formalism, can be chosen as the local minima
where the slowly relaxing out-of-equilibrium liquid is trapped.Comment: 7 pages, 4 eps figure
- …
