1,597 research outputs found
On the Complexity of Case-Based Planning
We analyze the computational complexity of problems related to case-based
planning: planning when a plan for a similar instance is known, and planning
from a library of plans. We prove that planning from a single case has the same
complexity than generative planning (i.e., planning "from scratch"); using an
extended definition of cases, complexity is reduced if the domain stored in the
case is similar to the one to search plans for. Planning from a library of
cases is shown to have the same complexity. In both cases, the complexity of
planning remains, in the worst case, PSPACE-complete
Planning When Goals Change: A Moving Target Search Approach
International audienceDevising intelligent robots or agents that interact with humans is a major challenge for artificial intelligence. In such contexts, agents must constantly adapt their decisions according to human activities and modify their goals. In this paper, we tackle this problem by introducing a novel planning approach, called Moving Goal Planning (MGP), to adapt plans to goal evolutions. This planning algorithm draws inspiration from Moving Target Search (MTS) algorithms. In order to limit the number of search iterations and to improve its efficiency, MGP delays as much as possible triggering new searches when the goal changes over time. To this purpose, MGP uses two strategies: Open Check (OC) that checks if the new goal is still in the current search tree and Plan Follow (PF) that estimates whether executing actions of the current plan brings MGP closer to the new goal. Moreover, MGP uses a parsimonious strategy to update incrementally the search tree at each new search that reduces the number of calls to the heuristic function and speeds up the search. Finally, we show evaluation results that demonstrate the effectiveness of our approach
Serodiagnosis of infectious mononucleosis by using recombinant Epstein-Barr virus antigens and enzyme-linked immunosorbent assay technology
Four recombinant, diagnostically useful Epstein-Barr virus (EBV) proteins representative of the viral capsid antigen (p150), diffuse early antigen (p54), the major DNA-binding protein (p138), and the EBV nuclear antigen (p72) (W. Hinderer, H. Nebel-Schickel, H.H. Sonneborn, M. Motz, R. Kühbeck, and H. Wolf, J. Exp. Clin. Cancer Res. 7[Suppl.]:132, 1988) were used to set up individual enzyme-linked immunosorbent assays (ELISAs) for the qualitative and quantitative detection of immunoglobulin M (IgM) and IgG antibodies. In direct comparison with results obtained by standard immunofluorescence or immunoperoxidase assays, it was then shown that the recombinant EBV ELISAs provide the means for specific and sensitive serodiagnosis of infectious mononucleosis (IM) caused by EBV. The most useful markers in sera from such patients proved to be IgM antibodies against p54, p138, and p150. Additional positive markers for recent or ongoing IM apparently were IgG antibodies against p54 and p138. In contrast, anti-p72 IgG had a high preference for sera from healthy blood donors and, therefore, can be considered indicative of past exposure to the virus. Altogether, the individual ELISAs proved to be as specific and at least as sensitive for the diagnosis of IM as the currently available standard techniques are. Moreover, our findings suggest that, by combining individual test antigens, a workable ELISA system consisting of three assays (IgM against p54, p138, and p150; IgG against p54 and p138; and IgG against p72) can be established for the standardized rapid diagnosis of acute EBV infections
The Amazon Flood Plain Forest Tree Maquira coriacea (Karsten) C.C. Berg: Aspects of Ecology and Management
Maquira coriacea is a commercial tree species growing throughout the Amazon flood plain forests. Densities up to 14/ha of individuals, >10 cm diameter at breast height (DBH) were observed, corresponding to a basal area of 2 m2/ha and a volume of 38 m3/ha. The primary period of fruiting coincided with the annual flooding, but fruits were also produced in other parts of the year. Seedlings with densities up to 150/m2 were concentrated around mother trees, and the stocks fluctuated much over the year due to mortality caused by flooding and wilting in dry periods. Growth data mainly from nine 1 ha permanent sample plots were used to develop models of the height-diameter relationship and diameter increment. These relationships indicated that the optimal felling limit for maximum volume production was 120-130 cm DBH, which can be obtained in 150-260 years. Since seed production has been observed in much smaller individuals, such diameter limits should not be detrimental to regeneration
Inertial electrostatic confinement as a power source for electric propulsion
The potential use of an INERTIAL ELECTROSTATIC CONFINEMENT (IEC) power source for space propulsion has previously been suggested by the authors and others. In the past, these discussions have generally followed the charged-particle electric-discharge engine (QED) concept proposed by Bussard, in which the IEC is used to generate an electron beam which vaporizes liquid hydrogen for use as a propellant. However, an alternate approach is considered, using the IEC to drive a 'conventional' electric thruster unit. This has the advantage of building on the rapidly developing technology for such thrusters, which operate at higher specific impulse. Key issues related to this approach include the continued successful development of the physics and engineering of the IEC unit, as well as the development of efficient step-down dc voltage transformers. The IEC operates by radial injection of energetic ions into a spherical vessel. A very high ion density is created in a small core region at the center of the vessel, resulting in extremely high fusion power density in the core. Experiments at the U. of Illinois in small IEC devices (is less than 60 cm. dia.) demonstrated much of the basic physics underlying this concept, e.g. producing 10(exp 6) D-D neutrons/sec steady-state with deuterium gas flow injection. The ultimate goal is to increase the power densities by several orders of magnitude and to convert to D-He-3 injection. If successful, such an experiment would represent a milestone proof-of-principle device for eventual space power use. Further discussion of IEC physics and status are presented with a description of the overall propulsion system and estimated performance
Space Charge Limited 2-d Electron Flow between Two Flat Electrodes in a Strong Magnetic Field
An approximate analytic solution is constructed for the 2-d space charge
limited emission by a cathode surrounded by non emitting conducting ledges of
width Lambda. An essentially exact solution (via conformal mapping) of the
electrostatic problem in vacuum is matched to the solution of a linearized
problem in the space charge region whose boundaries are sharp due to the
presence of a strong magnetic field. The current density growth in a narrow
interval near the edges of the cathode depends strongly on Lambda. We obtain an
empirical formula for the total current as a function of Lambda which extends
to more general cathode geometries.Comment: 4 pages, LaTex, e-mail addresses: [email protected],
[email protected]
High Efficiency Plastic Scintillator Detector with Wave-Length Shifting Fiber Readout for the GLAST Large Area Telescope
This paper describes the design and performance studies of the scintillator tile detectors for the Anti-Coincidence Detector (ACD) of the Large Area Telescope (LAT) on the Gamma ray Large Area Space Telescope (GLAST), scheduled for launch in early 2008. The scintillator tile detectors utilize wavelength shifting fibers and have dual photomultiplier tube (PMT) readout. The design requires highly efficient and uniform detection of singly charged relativistic particles over the tile area and must meet all requirements for a launch, as well as operation in a space environment. We present here the design of three basic types of tiles used in the ACD, ranging in size from approx.450 sq cm to approx.2500 sq cm, all 1 cm thick, with different shapes, and with photoelectron yield of approx. 20 photoelectrons per minimum ionizing particle (mip) at normal tile incidence, uniform over the tile area. Some tiles require flexible clear fiber cables up to 1.5 m long to deliver scintillator light to remotely located PMT
Nutrigenomics 2.0: The Need for Ongoing and Independent Evaluation and Synthesis of Commercial Nutrigenomics Tests' Scientific Knowledge Base for Responsible Innovation
Nutrigenomics is an important strand of precision medicine that examines the bidirectional interactions of the genome and nutritional exposures, and attendant health and disease outcomes. This perspectives article presents the new concept of "Nutrigenomics 2.0," so as to cultivate and catalyze the next generation research and funding priorities for responsible and sustainable knowledge-based innovations. We further contextualize our recent study of the 38 genes included in commercially available nutrigenomics tests, and offer additional context in relation to the 2014 American Academy of Nutrition and Dietetics position. Finally, we make a call in the best interest of the nutrigenomics science community, governments, global society, and commercial nutrigenomics test providers that new evidence evaluation and synthesis platforms are created concerning nutrigenomics tests before they become commercially available. The proposed assessment and synthesis of nutrigenomics data should be carried out on an ongoing dynamic basis with periodic intervals and/or when there is a specific demand for evidence synthesis, and importantly, in ways that are transparent where conflict of interests are disclosed fully by the involved parties, be they scientists, industry, governments, citizens, social scientists, or ethicists. We submit that this will cultivate responsible innovation, and business models that are sustainable, robust, and stand the test of time and context
Measurement of the CMS Magnetic Field
The measurement of the magnetic field in the tracking volume inside the
superconducting coil of the Compact Muon Solenoid (CMS) detector under
construction at CERN is done with a fieldmapper designed and produced at
Fermilab. The fieldmapper uses 10 3-D B-sensors (Hall probes) developed at
NIKHEF and calibrated at CERN to precision 0.05% for a nominal 4 T field. The
precise fieldmapper measurements are done in 33840 points inside a cylinder of
1.724 m radius and 7 m long at central fields of 2, 3, 3.5, 3.8, and 4 T. Three
components of the magnetic flux density at the CMS coil maximum excitation and
the remanent fields on the steel-air interface after discharge of the coil are
measured in check-points with 95 3-D B-sensors located near the magnetic flux
return yoke elements. Voltages induced in 22 flux-loops made of 405-turn
installed on selected segments of the yoke are sampled online during the entire
fast discharge (190 s time-constant) of the CMS coil and integrated offline to
provide a measurement of the initial magnetic flux density in steel at the
maximum field to an accuracy of a few percent. The results of the measurements
made at 4 T are reported and compared with a three-dimensional model of the CMS
magnet system calculated with TOSCA.Comment: 4 pages, 5 figures, 15 reference
- …
