224 research outputs found

    SILKNOWViz: Spatio-temporal data ontology viewer

    Get PDF
    Interactive visualization of spatio-temporal data is a very active area that has experienced remarkable advances in the last decade. This is due to the emergence of fields of research such as big data and advances in hardware that allow better analysis of information. This article describes the methodology followed and the design of an open source tool, which in addition to interactively visualizing spatio-temporal data that are represented in an ontology, allows the definition of what to visualize and how to do it. The tool allows selecting, filtering and visualizing in a graphical way the entities of the ontology with spatiotemporal data, as well as the instances related to them. The graphical elements used to display the information are specified on the same ontology, extending the VISO graphic ontology, used for mapping concepts to graphic objects with RDFS/OWL Visualization Language (RVL). This extension contemplates the data visualization on rich real-time 3D environments, allowing different modes of visualization according to the level of detail of the scene, while also emphasizing the treatment of spatio-temporal data, very often used in cultural heritage models. This visualization tool involves simple visualization scenarios and high interaction environments that allow complex comparative analysis. It combines traditional solutions, like hypercube or time-animations with innovative data selection methods.Interactive visualization of spatio-temporal data is a very active area that has experienced remarkable advances in the last decade. This is due to the emergence of fields of research such as big data and advances in hardware that allow better analysis of information. This article describes the methodology followed and the design of an open source tool, which in addition to interactively visualizing spatio-temporal data that are represented in an ontology, allows the definition of what to visualize and how to do it. The tool allows selecting, filtering and visualizing in a graphical way the entities of the ontology with spatiotemporal data, as well as the instances related to them. The graphical elements used to display the information are specified on the same ontology, extending the VISO graphic ontology, used for mapping concepts to graphic objects with RDFS/OWL Visualization Language (RVL). This extension contemplates the data visualization on rich real-time 3D environments, allowing different modes of visualization according to the level of detail of the scene, while also emphasizing the treatment of spatio-temporal data, very often used in cultural heritage models. This visualization tool involves simple visualization scenarios and high interaction environments that allow complex comparative analysis. It combines traditional solutions, like hypercube or time-animations with innovative data selection methods

    DIDS: rapidly prototyping configuration design systems

    Full text link
    The domain independent design system (DIDS) provides a set of tools for rapidly constructing new configuration design systems from a library of reusable software elements called mechanisms . A DIDS user begins by creating a model of the problem domain and the task to be automated. This includes describing a library of parts from which new artifacts could be configured, optimization and preference criteria, and functionality constraints. DIDS analyzes this input and automatically builds an operational prototype system by selecting and combining mechanisms. DIDS' ability to automate this process is derived from its model of configuration design, which enables reusable mechanisms to be identified and automatically selected based on a problem's characteristics. The use of DIDS is illustrated by showing how DIDS solved an elevator-configuration problem.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46597/1/10845_2004_Article_BF00124685.pd

    Exploiting user feedback to compensate for the unreliability of user models

    Get PDF
    Natural Language is a powerful medium for interacting with users, and sophisticated computer systems using natural language are becoming more prevalent. Just as human speakers show an essential, inbuilt responsiveness to their hearers, computer systems must “tailor” their utterances to users. Recognizing this, researchers devised user models and strategies for exploiting them in order to enable systems to produce the “best” answer for a particular user.Because these efforts were largely devoted to investigating how a user model could be exploited to produce better responses, systems employing them typically assumed that a detailed and correct model of the user was available a priori, and that the information needed to generate appropriate responses was included in that model. However, in practice, the completeness and accuracy of a user model cannot be guaranteed. Thus, unless systems can compensate for incorrect or incomplete user models, the impracticality of building user models will prevent much of the work on tailoring from being successfully applied in real systems. In this paper, we argue that one way for a system to compensate for an unreliable user model is to be able to react to feedback from users about the suitability of the texts it produces. We also discuss how such a capability can actually alleviate some of the burden now placed on user modeling. Finally, we present a text generation system that employs whatever information is available in its user model in an attempt to produce satisfactory texts, but is also capable of responding to the user's follow-up questions about the texts it produces

    An ontology supported risk assessment approach for the intelligent configuration of supply networks

    Get PDF
    As progress towards globalisation continues, organisations seek ever better ways with which to configure and reconfigure their global production networks so as to better understand and be able to deal with risk. Such networks are complex arrangements of different organisations from potentially diverse and divergent domains and geographical locations. Moreover, greater focus is being put upon global production network systems and how these can be better coordinated, controlled and assessed for risk, so that they are flexible and competitive advantage can be gained from them within the market place. This paper puts forward a reference ontology to support risk assessment for product-service systems applied to the domain of global production networks. The aim behind this is to help accelerate the development of information systems by way of developing a common foundation to improve interoperability and the seamless exchange of information between systems and organisations. A formal common logic based approach has been used to develop the reference ontology, utilising end user information and knowledge from three separate industrial domains. Results are presented which illustrate the ability of the approach, together with areas for further work
    corecore