1,490 research outputs found

    Bulk, surface and corner free energy series for the chromatic polynomial on the square and triangular lattices

    Full text link
    We present an efficient algorithm for computing the partition function of the q-colouring problem (chromatic polynomial) on regular two-dimensional lattice strips. Our construction involves writing the transfer matrix as a product of sparse matrices, each of dimension ~ 3^m, where m is the number of lattice spacings across the strip. As a specific application, we obtain the large-q series of the bulk, surface and corner free energies of the chromatic polynomial. This extends the existing series for the square lattice by 32 terms, to order q^{-79}. On the triangular lattice, we verify Baxter's analytical expression for the bulk free energy (to order q^{-40}), and we are able to conjecture exact product formulae for the surface and corner free energies.Comment: 17 pages. Version 2: added 4 further term to the serie

    Foundation and empire : a critique of Hardt and Negri

    Get PDF
    In this article, Thompson complements recent critiques of Hardt and Negri's Empire (see Finn Bowring in Capital and Class, no. 83) using the tools of labour process theory to critique the political economy of Empire, and to note its unfortunate similarities to conventional theories of the knowledge economy

    New Algorithm of the Finite Lattice Method for the High-temperature Expansion of the Ising Model in Three Dimensions

    Full text link
    We propose a new algorithm of the finite lattice method to generate the high-temperature series for the Ising model in three dimensions. It enables us to extend the series for the free energy of the simple cubic lattice from the previous series of 26th order to 46th order in the inverse temperature. The obtained series give the estimate of the critical exponent for the specific heat in high precision.Comment: 4 pages, 4 figures, submitted to Phys. Rev. Letter

    Large-qq expansion of the specific heat for the two-dimensional qq-state Potts model

    Get PDF
    We have calculated the large-qq expansion for the specific heat at the phase transition point in the two-dimensional qq-state Potts model to the 23rd order in 1/q1/\sqrt{q} using the finite lattice method. The obtained series allows us to give highly convergent estimates of the specific heat for q>4q>4 on the first order transition point. The result confirm us the correctness of the conjecture by Bhattacharya et al. on the asymptotic behavior of the specific heat for q4+q \to 4_+.Comment: 7 pages, LaTeX, 2 postscript figure

    Specific heat and high-temperature series of lattice models: interpolation scheme and examples on quantum spin systems in one and two dimensions

    Full text link
    We have developed a new method for evaluating the specific heat of lattice spin systems. It is based on the knowledge of high-temperature series expansions, the total entropy of the system and the low-temperature expected behavior of the specific heat as well as the ground-state energy. By the choice of an appropriate variable (entropy as a function of energy), a stable interpolation scheme between low and high temperature is performed. Contrary to previous methods, the constraint that the total entropy is log(2S+1) for a spin S on each site is automatically satisfied. We present some applications to quantum spin models on one- and two- dimensional lattices. Remarkably, in most cases, a good accuracy is obtained down to zero temperature.Comment: 10 pages (RevTeX 4) including 11 eps figures. To appear in Phys. Rev.

    Zeros of the Partition Function for Higher--Spin 2D Ising Models

    Get PDF
    We present calculations of the complex-temperature zeros of the partition functions for 2D Ising models on the square lattice with spin s=1s=1, 3/2, and 2. These give insight into complex-temperature phase diagrams of these models in the thermodynamic limit. Support is adduced for a conjecture that all divergences of the magnetisation occur at endpoints of arcs of zeros protruding into the FM phase. We conjecture that there are 4[s2]24[s^2]-2 such arcs for s1s \ge 1, where [x][x] denotes the integral part of xx.Comment: 8 pages, latex, 3 uuencoded figure

    Kondo Effect in a Metal with Correlated Conduction Electrons: Diagrammatic Approach

    Full text link
    We study the low-temperature behavior of a magnetic impurity which is weakly coupled to correlated conduction electrons. To account for conduction electron interactions a diagrammatic approach in the frame of the 1/N expansion is developed. The method allows us to study various consequences of the conduction electron correlations for the ground state and the low-energy excitations. We analyse the characteristic energy scale in the limit of weak conduction electron interactions. Results are reported for static properties (impurity valence, charge susceptibility, magnetic susceptibility, and specific heat) in the low-temperature limit.Comment: 16 pages, 9 figure

    Low Temperature Expansions for Potts Models

    Full text link
    On simple cubic lattices, we compute low temperature series expansions for the energy, magnetization and susceptibility of the three-state Potts model in D=2 and D=3 to 45 and 39 excited bonds respectively, and the eight-state Potts model in D=2 to 25 excited bonds. We use a recursive procedure which enumerates states explicitly. We analyze the series using Dlog Pade analysis and inhomogeneous differential approximants.Comment: (17 pages + 8 figures
    corecore