14,692 research outputs found
Universal features of information spreading efficiency on -dimensional lattices
A model for information spreading in a population of mobile agents is
extended to -dimensional regular lattices. This model, already studied on
two-dimensional lattices, also takes into account the degeneration of
information as it passes from one agent to the other. Here, we find that the
structure of the underlying lattice strongly affects the time at which
the whole population has been reached by information. By comparing numerical
simulations with mean-field calculations, we show that dimension is
marginal for this problem and mean-field calculations become exact for .
Nevertheless, the striking nonmonotonic behavior exhibited by the final degree
of information with respect to and the lattice size appears to be
geometry independent.Comment: 8 pages, 9 figure
Anisotropic renormalized fluctuations in the microwave resistivity in YBCO
We discuss the excess conductivity above Tc due to renormalized
order-parameter fluctuations in YBCO at microwave frequencies. We calculate the
effects of the uniaxial anisotropy on the renormalized fluctuations in the
Hartree approximation, extending the isotropic theory developed by Dorsey
[Phys. Rev. B 43, 7575 (1991)]. Measurements of the real part of the microwave
resistivity at 24 and 48 GHz and of the dc resistivity are performed on
different YBCO films. The onset of the superconducting transition and the
deviation from the linear temperature behavior above Tc can be fully accounted
for by the extended theory. According to the theoretical calculation here
presented, a departure from gaussian toward renormalized fluctuations is
observed. Very consistent values of the fundamental parameters (critical
temperature, coherence lenghts, penetration depth) of the superconducting state
are obtained.Comment: RevTex, 8 pages with 5 figures included, to be published in Physical
Review
High-resolution [C II] imaging of HDF850.1 reveals a merging galaxy at z=5.185
New high-resolution maps with the IRAM Interferometer of the redshifted [C
II] 158 micron line and the 0.98mm dust continuum of HDF850.1 at z = 5.185 show
the source to have a blueshifted northern component and a redshifted southern
component, with a projected separation of 0.3 arcsec, or 2 kpc. We interpret
these components as primordial galaxies that are merging to form a larger
galaxy. We think it is the resulting merger-driven starburst that makes
HDF850.1 an ultraluminous infrared galaxy, with an L(IR) of 1E13 Lsun. The
observed line and continuum brightness temperatures and the constant
line-to-continuum ratio across the source imply (1) high [C II] line optical
depth, (2) a [C II] excitation temperature of the same order as the dust
temperature, and (3) dust continuum emission that is nearly optically thick at
158 microns. These conclusions for HDF850.1 probably also apply to other
high-redshift submillimeter galaxies and quasar hosts in which the [C II] 158
micron line has been detected, as indicated by their roughly constant [C
II]-to-158 micron continuum ratios, in sharp contrast to the large dispersion
in their [C II]-to-FIR luminosity ratios. In brightness temperature units, the
[C II] line luminosity is about the same as the predicted CO(1-0) luminosity,
implying that the [C II] line can also be used to estimate the molecular gas
mass, with the same assumptions as for CO.Comment: Accepted by Astronomy and Astrophysic
SiO collimated outflows driven by high-mass YSOs in G24.78+0.08
We imaged the molecular outflows towards the cluster of high-mass young
stellar objects G24.78+0.08 at high-angular resolution using SiO emission,
which is considered the classical tracer of protostellar jets. We performed SiO
observations with the VLA interferometer in the J = 1-0 v=0 transition and with
the SMA array in the 5-4 transition. A complementary IRAM 30-m single-dish
survey in the (2-1), (3-2), (5-4), and (6-5) SiO lines was also carried out.
Two collimated SiO high-velocity outflows driven by the A2 and C millimeter
continuum massive cores have been imaged. On the other hand, we detected no SiO
outflow driven by the young stellar objects in more evolved evolutionary phases
that are associated with ultracompact (B) or hypercompact (A1) HII regions. The
LVG analysis reveals high-density gas (10^3-10^4 cm-3), with well constrained
SiO column densities (0.5-1 10^15 cm-2). The driving source of the A2 outflow
is associated with typical hot core tracers such as methyl formate, vinyl
cyanide, cyanoacetilene, and acetone. The driving source of the main SiO
outflow in G24 has an estimated luminosity of a few 10^4 Lsun (typical of a
late O-type star) and is embedded in the 1.3 mm continuum core A2, which in
turn is located at the centre of a hot core that rotates on a plane
perpendicular to the outflow main axis. The present SiO images support a
scenario similar to the low-mass case for massive star formation, where jets
that are clearly traced by SiO emission, create outflows of swept-up ambient
gas usually traced by CO.Comment: Astronomy & Astrophysics, in pres
Modelling the Molecular Gas in NGC 6240
We present the first observations of HCN, HCO
and SiO in NGC\,6240, obtained with the IRAM PdBI. Combining a Markov
Chain Monte Carlo (MCMC) code with Large Velocity Gradient (LVG) modelling, and
with additional data from the literature, we simultaneously fit three gas
phases and six molecular species to constrain the physical condition of the
molecular gas, including massluminosity conversion factors. We find
of dense molecular gas in cold, dense clouds (\,K, \,cm) with a volume filling factor
, embedded in a shock heated molecular medium (\,K,
\,cm), both surrounded by an extended diffuse
phase (\,K, \,cm). We
derive a global with gas masses
, dominated by the
dense gas. We also find , which traces the
cold, dense gas. The [C]/[C] ratio is only slightly elevated
(), contrary to the very high [CO]/[CO] ratio (300-500)
reported in the literature. However, we find very high [HCN]/[HCN] and
[HCO]/[HCO] abundance ratios which we
attribute to isotope fractionation in the cold, dense clouds.Comment: 27 pages, 17 figures, 9 tables. Accepted in Ap
Discovery of Water Vapor in the High-redshift Quasar APM 08279+5255 at z = 3.91
We report a detection of the excited 2_(20)-2_(11) rotational transition of para-H_2O in APM 08279+5255 using the IRAM Plateau de Bure Interferometer. At z = 3.91, this is the highest-redshift detection of interstellar water to date. From large velocity gradient modeling, we conclude that this transition is predominantly radiatively pumped and on its own does not provide a good estimate of the water abundance. However, additional water transitions are predicted to be detectable in this source, which would lead to an improved excitation model. We also present a sensitive upper limit for the hydrogen fluoride (HF) J = 1-0 absorption toward APM 08279+5255. While the face-on geometry of this source is not favorable for absorption studies, the lack of HF absorption is still puzzling and may be indicative of a lower fluorine abundance at z = 3.91 compared with the Galactic interstellar medium
- …
