461 research outputs found

    Principal noncommutative torus bundles

    Full text link
    In this paper we study continuous bundles of C*-algebras which are non-commutative analogues of principal torus bundles. We show that all such bundles, although in general being very far away from being locally trivial bundles, are at least locally trivial with respect to a suitable bundle version of bivariant K-theory (denoted RKK-theory) due to Kasparov. Using earlier results of Echterhoff and Williams, we shall give a complete classification of principal non-commutative torus bundles up to equivariant Morita equivalence. We then study these bundles as topological fibrations (forgetting the group action) and give necessary and sufficient conditions for any non-commutative principal torus bundle being RKK-equivalent to a commutative one. As an application of our methods we shall also give a K-theoretic characterization of those principal torus-bundles with H-flux, as studied by Mathai and Rosenberg which possess "classical" T-duals.Comment: 33 pages, to appear in the Proceedings of the London Mathematical Societ

    Ammonia production by human faecal bacteria, and the enumeration, isolation and characterization of bacteria capable of growth on peptides and amino acids

    Get PDF
    DA - 20130125 IS - 1471-2180 (Electronic) IS - 1471-2180 (Linking) LA - eng PT - Journal Article PT - Research Support, Non-U.S. Gov't SB - IMPeer reviewedPublisher PD

    Dynamic Matter-Wave Pulse Shaping

    Full text link
    In this paper we discuss possibilities to manipulate a matter-wave with time-dependent potentials. Assuming a specific setup on an atom chip, we explore how one can focus, accelerate, reflect, and stop an atomic wave packet, with, for example, electric fields from an array of electrodes. We also utilize this method to initiate coherent splitting. Special emphasis is put on the robustness of the control schemes. We begin with the wave packet of a single atom, and extend this to a BEC, in the Gross-Pitaevskii picture. In analogy to laser pulse shaping with its wide variety of applications, we expect this work to form the base for additional time-dependent potentials eventually leading to matter-wave pulse shaping with numerous application

    Classical spin systems and the quantum stabilizer formalism: general mappings and applications

    Full text link
    We present general mappings between classical spin systems and quantum physics. More precisely, we show how to express partition functions and correlation functions of arbitrary classical spin models as inner products between quantum stabilizer states and product states, thereby generalizing mappings for some specific models established in [Phys. Rev. Lett. 98, 117207 (2007)]. For Ising- and Potts-type models with and without external magnetic field, we show how the entanglement features of the corresponding stabilizer states are related to the interaction pattern of the classical model, while the choice of product states encodes the details of interaction. These mappings establish a link between the fields of classical statistical mechanics and quantum information theory, which we utilize to transfer techniques and methods developed in one field to gain insight into the other. For example, we use quantum information techniques to recover well known duality relations and local symmetries of classical models in a simple way, and provide new classical simulation methods to simulate certain types of classical spin models. We show that in this way all inhomogeneous models of q-dimensional spins with pairwise interaction pattern specified by a graph of bounded tree-width can be simulated efficiently. Finally, we show relations between classical spin models and measurement-based quantum computation.Comment: 24 pages, 5 figures, minor corrections, version as accepted in JM

    Graph states as ground states of many-body spin-1/2 Hamiltonians

    Get PDF
    We consider the problem whether graph states can be ground states of local interaction Hamiltonians. For Hamiltonians acting on n qubits that involve at most two-body interactions, we show that no n-qubit graph state can be the exact, non-degenerate ground state. We determine for any graph state the minimal d such that it is the non-degenerate ground state of a d-body interaction Hamiltonian, while we show for d'-body Hamiltonians H with d'<d that the resulting ground state can only be close to the graph state at the cost of H having a small energy gap relative to the total energy. When allowing for ancilla particles, we show how to utilize a gadget construction introduced in the context of the k-local Hamiltonian problem, to obtain n-qubit graph states as non-degenerate (quasi-)ground states of a two-body Hamiltonian acting on n'>n spins.Comment: 10 pages, 1 figur

    Which graph states are useful for quantum information processing?

    Full text link
    Graph states are an elegant and powerful quantum resource for measurement based quantum computation (MBQC). They are also used for many quantum protocols (error correction, secret sharing, etc.). The main focus of this paper is to provide a structural characterisation of the graph states that can be used for quantum information processing. The existence of a gflow (generalized flow) is known to be a requirement for open graphs (graph, input set and output set) to perform uniformly and strongly deterministic computations. We weaken the gflow conditions to define two new more general kinds of MBQC: uniform equiprobability and constant probability. These classes can be useful from a cryptographic and information point of view because even though we cannot do a deterministic computation in general we can preserve the information and transfer it perfectly from the inputs to the outputs. We derive simple graph characterisations for these classes and prove that the deterministic and uniform equiprobability classes collapse when the cardinalities of inputs and outputs are the same. We also prove the reversibility of gflow in that case. The new graphical characterisations allow us to go from open graphs to graphs in general and to consider this question: given a graph with no inputs or outputs fixed, which vertices can be chosen as input and output for quantum information processing? We present a characterisation of the sets of possible inputs and ouputs for the equiprobability class, which is also valid for deterministic computations with inputs and ouputs of the same cardinality.Comment: 13 pages, 2 figure
    corecore