68 research outputs found
Flight measurements of the drag of a swept-wing aircraft (hunter Mk. 1) at mach numbers up to 1.2, together with some measurements of lift-curve slope
Flight tests have been made to determine the drag of a Hawker Hunter F Mk. I aircraft. The results show that at low Mach number the drag coefficient at zero lift is 0.0125 and the effective induced-drag factor K is 1.09, both values being corrected to a constant Reynolds number of 34 x 10power6. Above a certain C L the drag due to lift increases rapidly, the C L at which this occurs falling from 0.76 at M = 0.3 to 0.41 at M = 0.7. Some approximate measurements of K made at supersonic speeds suggest that virtually all the leading-edge suction on the wing is lost beyond M = 1.0. At C L = 0.1, the compressibility drag rise commences soon after M = 0.8, the drag rising rapidly beyond M = 0.92 and attaining a peak C D of 0.0565 at M = 1.15. The compressibility drag rise obtained from high-speed wind-tunnel tests agrees well with that obtained in flight although this agreement may be largely fortuitous in view of the low tunnel Reynolds number. Measurements of incidence show that the lift-curve slope at M = 0.3 is 3.5 rising to 4.6 at M = 0.9. The zero-lift angle remains constant with Mach number at about 0.4°. Agreement with wind-tunnel tests is reasonably good when allowance is made for differences in geometry and in Reynolds number
Adult attachment and relationship satisfaction : potential mediating effects of relational conflict and social self-efficacy
Access to thesis permanently restricted to Ball State community only.Access to abstract permanently restricted to Ball State community only.Thesis (Ph. D.
Adult attachment and relationship satisfaction : potential mediating effects of relational conflict and social self-efficacy
Access to thesis permanently restricted to Ball State community only.Access to abstract permanently restricted to Ball State community only.Thesis (Ph. D.
Fission of<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mmultiscripts><mml:mrow><mml:mi mathvariant="normal">U</mml:mi></mml:mrow><mml:mprescripts /><mml:mrow /><mml:mrow><mml:mn>234</mml:mn></mml:mrow><mml:mrow /><mml:mrow /></mml:mmultiscripts></mml:mrow></mml:math>and<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mmultiscripts><mml:mrow><mml:mi mathvariant="normal">U</mml:mi></mml:mrow><mml:mprescripts /><mml:mrow /><mml:mrow><mml:mn>236</mml:mn></mml:mrow><mml:mrow /><mml:mrow /></mml:mmultiscripts></mml:mrow></mml:math>with 14.8-MeV Neutrons
Fission of<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msup><mml:mrow><mml:mi mathvariant="normal">U</mml:mi></mml:mrow><mml:mrow><mml:mn>233</mml:mn></mml:mrow></mml:msup></mml:mrow></mml:math>with 14.8-MeV Neutrons
Comparison of Yields from Fission of<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mmultiscripts><mml:mrow><mml:mi mathvariant="normal">U</mml:mi></mml:mrow><mml:mprescripts /><mml:mrow /><mml:mrow><mml:mn>233</mml:mn></mml:mrow><mml:mrow /><mml:mrow /></mml:mmultiscripts></mml:mrow></mml:math>,<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mmultiscripts><mml:mrow><mml:mi mathvariant="normal">U</mml:mi></mml:mrow><mml:mprescripts /><mml:mrow /><mml:mrow><mml:mn>234</mml:mn></mml:mrow><mml:mrow /><mml:mrow /></mml:mmultiscripts></mml:mrow></mml:math>,<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mmultiscripts><mml:mrow><mml:mi mathvariant="normal">U</mml:mi></mml:mrow><mml:mprescripts /><mml:mrow /><mml:mrow><mml:mn>235</mml:mn></mml:mrow><mml:mrow /><mml:mrow /></mml:mmultiscripts></mml:mrow></mml:math>,<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mmultiscripts><mml:mrow><mml:mi mathvariant="normal">U</mml:mi></mml:mrow><mml:mprescripts /><mml:mrow /><mml:mrow><mml:mn>236</mml:mn></mml:mrow><mml:mrow /><mml:mrow /></mml:mmultiscripts></mml:mrow></mml:math>, and<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mmultiscripts><mml:mrow><mml:mi mathvariant="normal">U</mml:mi></mml:mrow><mml:mprescripts /><mml:mrow /><mml:mrow><mml:mn>238</mml:mn></mml:mrow><mml:mrow /><mml:mrow /></mml:mmultiscripts></mml:mrow></mml:math>with 14.8-MeV Neutrons
Recommended from our members
Measured data used in the Watusi cross-section sets
In this document we list the experimental data that were used to make up the major cross- section sets that we use in the Watusi code to calculate the amount of detector activation in device tests. In order to use experimental data to make up a cross-section set, it is often necessary to extrapolate the cross sections down to either the threshold energy or to 0.01 keV, and to extrapolate up to 20 MeV. We then fit the data to a function so that we can get a smoothed set of interpolated values at up to 321 energy points. The combined data are then processed with the Hiroshima code into flux-weighted, group-averaged cross sections for use with the output from the different physics design codes. We typically use the standard 53 or 175 energy group structures. In a recent companion memo 1 we described the make up of all of the cross-section sets in detail, giving references to both the experimental data and the theoretical calculations that were used. The following sections have the experimental data, in the form of energy-cross section pairs, for the titanium, chromium, bromine, krypton, yttrium, zirconium, iodine, europium, lutetium, and bismuth sets. The other cross-section sets are not directly based on enough experimental data to warrant their listing here. Many of the reactions used in these sets are based on calculated cross sections. In making these calculations certain parameters are sometimes adjusted so that the calculated cross sections match experimental data. In some of these cases we have made a further normalization to give a closer agreement to selected experimental data, and such normalizations are noted in this document. In other cases no further normalization was made. In Table 1 we summarize the reactions for which we present the experimental data given in Tables 2-46. In Figs. 1-35 we show plots of the experimental data together with the actual excitation functions used in the cross-section sets. Some reactions in the current sets are based on preliminary experimental data for which final results are now available. In those cases we show both the preliminary and the final data on the same plots. We expect to find only a few percent change in the calculated activation when we switch to the final experimental data
- …
