16,238 research outputs found

    Production of 92Nb, 92Mo, and 146Sm in the gamma-process in SNIa

    Get PDF
    The knowledge of the production of extinct radioactivities like 92Nb and 146Sm by photodisintegration processes in ccSN and SNIa models is essential for interpreting abundances in meteoritic material and for Galactic Chemical Evolution (GCE). The 92Mo/92Nb and 146Sm/144Sm ratios provide constraints for GCE and production sites. We present results for SNIa with emphasis on nuclear uncertainties.Comment: 6 pages, 4 figures, Proceedings of the 13th Symposium on Nuclei in the Cosmos (NIC XIII), July 2014, Debrecen, Hungar

    Liftable vector fields over corank one multigerms

    Full text link
    In this paper, a systematic method is given to construct all liftable vector fields over an analytic multigerm f:(Kn,S)(Kp,0)f: (\mathbb{K}^n, S)\to (\mathbb{K}^p,0) of corank at most one admitting a one-parameter stable unfolding.Comment: 34 pages. In ver. 2, several careless mistakes for calculations in Section 6 were correcte

    Finite N Matrix Models of Noncommutative Gauge Theory

    Full text link
    We describe a unitary matrix model which is constructed from discrete analogs of the usual projective modules over the noncommutative torus and use it to construct a lattice version of noncommutative gauge theory. The model is a discretization of the noncommutative gauge theories that arise from toroidal compactification of Matrix theory and it includes a recent proposal for a non-perturbative definition of noncommutative Yang-Mills theory in terms of twisted reduced models. The model is interpreted as a manifestly star-gauge invariant lattice formulation of noncommutative gauge theory, which reduces to ordinary Wilson lattice gauge theory for particular choices of parameters. It possesses a continuum limit which maintains both finite spacetime volume and finite noncommutativity scale. We show how the matrix model may be used for studying the properties of noncommutative gauge theory.Comment: 17 pp, Latex2e; Typos corrected, references adde

    Abundance Uncertainties Obtained With the PizBuin Framework For Monte Carlo Reaction Rate Variations

    Get PDF
    Uncertainties in nucleosynthesis models originating from uncertainties in astrophysical reaction rates were estimated in a Monte Carlo variation procedure. Thousands of rates were simultaneously varied within individual, temperature-dependent errors to calculate their combined effect on final abundances. After a presentation of the method, results from application to three different nucleosynthesis processes are shown: the γ\gamma-process and the s-process in massive stars, and the main s-process in AGB stars (preliminary results). Thermal excitation of nuclei in the stellar plasma and the combined action of several reactions increase the final uncertainties above the level of the experimental errors. The total uncertainty, on the other hand, remains within a factor of two even in processes involving a large number of unmeasured rates, with some notable exceptions for nuclides whose production is spread over several stellar layers and for s-process branchings.Comment: 8 pages, 4 figures; Proceedings of OMEG 2017, Daejeon, Korea, June 27-30, 2017; to appear in AIP Conf. Pro

    Non-lattice simulation for supersymmetric gauge theories in one dimension

    Full text link
    Lattice simulation of supersymmetric gauge theories is not straightforward. In some cases the lack of manifest supersymmetry just necessitates cumbersome fine-tuning, but in the worse cases the chiral and/or Majorana nature of fermions makes it difficult to even formulate an appropriate lattice theory. We propose to circumvent all these problems inherent in the lattice approach by adopting a non-lattice approach in the case of one-dimensional supersymmetric gauge theories, which are important in the string/M theory context.Comment: REVTeX4, 4 pages, 3 figure

    Particle Energization in an Expanding Magnetized Relativistic Plasma

    Full text link
    Using a 2-1/2-dimensional particle-in-cell (PIC) code to simulate the relativistic expansion of a magnetized collisionless plasma into a vacuum, we report a new mechanism in which the magnetic energy is efficiently converted into the directed kinetic energy of a small fraction of surface particles. We study this mechanism for both electron-positron and electron-ion (mi/me=100, me is the electron rest mass) plasmas. For the electron-positron case the pairs can be accelerated to ultra-relativistic energies. For electron-ion plasmas most of the energy gain goes to the ions.Comment: 7 pages text plus 5 figures, accepted for publication by Physical Review Letter

    Migration and generation of contaminants from launch through recovery: LDEF case history

    Get PDF
    It is possible to recreate the contamination history of the Long Duration Exposure Facility (LDEF) through an analysis of its contaminants and selective samples that were collected from surfaces with better documented exposure histories. This data was then used to compare estimates based on monitoring methods that were selected for the purpose of tracking LDEF's exposure to contaminants. The LDEF experienced much more contamination than would have been assumed based on the monitors. Work is still in progress but much of what was learned so far is already being used in the selection of materials and in the design of systems for space. Now experiments are being prepared for flight to resolve questions created by the discoveries on the LDEF. A summary of what was learned about LDEF contaminants over the first year since recovery and deintegration is presented. Over 35 specific conclusions in 5 contamination related categories are listed
    corecore